精英家教网 > 高中数学 > 题目详情
2.已知某几何体的三视图如图所示,则该几何体的外接球体积为$\frac{8\sqrt{2}π}{3}$.

分析 由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于一个长,宽,高分别为$\sqrt{2}$,$\sqrt{2}$,2的长方体的外接球,计算出球的半径,代入球的体积公式,可得答案.

解答 解:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,
其外接球相当于一个长,宽,高分别为$\sqrt{2}$,$\sqrt{2}$,2的长方体的外接球,
故外接球的半径R=$\frac{\sqrt{{\sqrt{2}}^{2}+{\sqrt{2}}^{2}+{2}^{2}}}{2}$=$\sqrt{2}$,
故球的体积V=$\frac{4}{3}{πR}^{3}$=$\frac{8\sqrt{2}π}{3}$,
故答案为:$\frac{8\sqrt{2}π}{3}$.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设某几何体的三视图如图(单位m):则它的体积是(  )
A.4m3B.8m3C.4$\sqrt{3}$m3D.8$\sqrt{3}$m3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z=$\frac{1+2i}{1+i}$的共轭复数$\overrightarrow{z}$表示的点在复平面上位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是(  )
A.π+24B.π+20C.2π+24D.2π+20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,圆O的直径AD=2,动弦BC垂直于AD.设∠AOB=α,△ABC的面积为S.
(1)试建立S关于α的函数关系;
(2)当α为何值时,S取得最大值,并求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=-x2+2x+3 在区间[-4,4]任取一个实数x0,则f(x0)≥0成立的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在极坐标系中,曲线ρ3cosθ+1=0上的点到A(1,0)的距离的最小值为$\sqrt{1+2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为$\frac{33}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某地拟模仿图(1)建造一座大型体育馆,其设计方案侧面的外轮廓线如图(2)所示:曲线AB是以点E为圆心的圆的一部分,其中E(0,t)(0<t≤10,单位:米);曲线BC是抛物线y=-ax2+30(a>0)的一部分;CD⊥AD,且CD恰好等于圆E的半径.

(1)若要求CD=20米,AD=(10$\sqrt{3}$+30)米,求t与a值;
(2)若要求体育馆侧面的最大宽度DF不超过45米,求a的取值范围.

查看答案和解析>>

同步练习册答案