精英家教网 > 高中数学 > 题目详情
14.在极坐标系中,曲线ρ3cosθ+1=0上的点到A(1,0)的距离的最小值为$\sqrt{1+2\sqrt{2}}$.

分析 曲线ρ3cosθ+1=0化为(x2+y2)x+1=0,可得y2=-$\frac{{x}^{3}+1}{x}$,设P(x,y)是曲线上的任意一点,利用两点之间的距离公式可得|PA|=$\sqrt{1-(2x+\frac{1}{x})}$,由y2=-$\frac{{x}^{3}+1}{x}$≥0,解得-1≤x<0,再利用基本不等式的性质即可得出.

解答 解:曲线ρ3cosθ+1=0化为(x2+y2)x+1=0,
∴y2=-$\frac{{x}^{3}+1}{x}$,
设P(x,y)是曲线上的任意一点,
则|PA|=$\sqrt{(x-1)^{2}+{y}^{2}}$=$\sqrt{(x-1)^{2}-\frac{{x}^{3}+1}{x}}$=$\sqrt{1-(2x+\frac{1}{x})}$,
由y2=-$\frac{{x}^{3}+1}{x}$≥0,解得-1≤x<0,
由$-2x+\frac{1}{-x}$$≥2\sqrt{-2x•\frac{1}{-x}}$=2$\sqrt{2}$,当且仅当x=-$\frac{\sqrt{2}}{2}$时取等号.
∴|PA|min=$\sqrt{1+2\sqrt{2}}$.
故答案为:$\sqrt{1+2\sqrt{2}}$.

点评 本题考查了把极坐标化为直角坐标、两点之间的距离公式、基本不等式的性质,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知双曲线C1:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左焦点为F,直线l是圆心C2:x2+y2=b2的一条切线,O为坐标原点.
(1)若曲线C1与C2的交点恰为一个正方形的四个顶点,求该正方形的面积;
(2)求证:若直线l过点F,则l与曲线C1恰有一个交点;
(3)若b=$\sqrt{2}$,设直线l与曲线C1交于A、B两点,求证:∠AOB为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=k-|x-3|,k∈R,且f(x+3)≥0的解集为[-1,1].
(Ⅰ)求k的值;
(Ⅱ)若a、b、c是正实数,且$\frac{1}{ka}+\frac{1}{2kb}+\frac{1}{3kc}=1$,求证:$\frac{1}{9}a+\frac{2}{9}b+\frac{3}{9}c≥1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知某几何体的三视图如图所示,则该几何体的外接球体积为$\frac{8\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知三角形两边长分别为4和2$\sqrt{3}$,第三条边上的中线长为$\sqrt{5}$,则三角形的外接圆半径为$\frac{6\sqrt{33}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\sqrt{x}$,g(x)=-2x,则y=f(x)-g(x)在定义域上是增函数.正确(判断对错),说明理由:y′>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商人开始将进货单价为8元的商品按每件10元售出,每天可销售100件,现在他想采用提高售价的方法来增加利润,已知这种商品每件提价1元,每天销售就要减少10件.
(1)写出售出价格x元与每天所得的毛利润y元之间的函数关系式;
(2)问每天售出价为多少时,才能使每天获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若$\sqrt{3}$sinx-cosx=2sin(x+φ),φ∈(-π,π),则φ=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线l1:x+ay-1=0与l2:4x-2y+3=0垂直,则积分${∫}_{-2}^{a}$(x3+sinx-5)dx的值为(  )
A.6+2sin2B.-6-2cos2C.20D.-20

查看答案和解析>>

同步练习册答案