精英家教网 > 高中数学 > 题目详情
4.已知直线y=x+m与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1,试讨论直线与双曲线位置关系及相应的m的取值范围.

分析 直线y=x+m与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1联立,消去y,可得7x2+32mx+16m2+144=0,利用判别式,即可得出结论.

解答 解:直线y=x+m与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1联立,消去y,可得7x2+32mx+16m2+144=0,
△=(32m)2-28(16m2+144)=576m2-28×144,
△>0,m<-$\sqrt{7}$或m>$\sqrt{7}$,直线与双曲线有两个交点;
△=0,m=±$\sqrt{7}$,直线与双曲线有1个交点;
△<0,-$\sqrt{7}$<m<$\sqrt{7}$,直线与双曲线无交点.

点评 本题考查直线与双曲线位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.下列有关命题的叙述,正确的序号为②④.
①若p∨q为真命题,则p∧q为真命题.
②“x>5”是“x2-4x-5>0”的充分不必要条件.
③曲线$\frac{x^2}{20-m}+\frac{y^2}{6-m}=1\;(m<6)$与曲线$\frac{x^2}{5-n}+\frac{y^2}{9+n}=1\;(n>5)$的焦点相同.
④已知命题p:F1,F2是平面内距离为6的两定点,动点M在此平面内,且满足|MF1|+|MF2|=8,则M点的轨迹是椭圆;命题q:F1,F2是平面内距离为6的两定点,动点M在此平面内,且满足||MF1|-|MF2||=6,则M点在轨迹是双曲线;则命题p∧?q是真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给定映射:f:(x,y)→(x+2y,y-2x),在映射f下,(3,1)的像为(5,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A,左焦点为F,上顶点为B,O为坐标原点,若∠BFO=60°,S△ABF=$\sqrt{3}$,则该椭圆的标准方程是$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.焦点为(0,±3)且与双曲线$\frac{x^2}{2}$-y2=1有相同的渐近线的双曲线方程是$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{\frac{75}{4}}$=1上一点,F1,F2是椭圆的焦点,若∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$,短轴顶点B(0,b),若椭圆内接三角形BMN的重心是椭圆的左焦点F,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.判断直线l:pcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$与圆C:p=4sinθ的位置关系,若相交,求直线被圆所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(Ⅰ)椭圆的中心在坐标原点,焦点在坐标轴上,两顶点分别是(4,0,)(0,2),求椭圆的方程;
(Ⅱ)与双曲线$\frac{x^2}{2}-{y^2}=1$有相同的渐近线,且经过点A(2,-3)的双曲线方程.

查看答案和解析>>

同步练习册答案