8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²C1ºÍC2µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cos¦Õ\\ y=2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©ºÍ$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£»
£¨1£©ÇóÔ²C1ºÍC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏß$OM£º¦È=¦Á£¨0£¼¦Á£¼\frac{¦Ð}{2}£©$ÓëÔ²C1µÄ½»µãΪO¡¢P£¬ÓëÔ²C2µÄ½»µãΪO¡¢Q£¬Çó|OP|•|OQ|µÄ×î´óÖµ£®

·ÖÎö £¨1£©Ô²C1µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cos¦Õ\\ y=2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£¬Õ¹¿ªÀûÓû¥»¯¹«Ê½¿ÉµÃ¼«×ø±ê·½³Ì£®Ô²C2µÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£¬Õ¹¿ªÀûÓû¥»¯¹«Ê½¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©°ÑÉäÏß$OM£º¦È=¦Á£¨0£¼¦Á£¼\frac{¦Ð}{2}£©$´úÈë·Ö±ðÔ²C1ÓëÔ²C2µÄ¼«×ø±ê·½³Ì¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ô²C1µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cos¦Õ\\ y=2sin¦Õ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£º£¨x-2£©2+y2=4£¬Õ¹¿ªÎª£ºx2+y2-4x=0£¬
¿ÉµÃ¼«×ø±ê·½³Ì£º¦Ñ2-4¦Ñcos¦È=0£¬¼´¦Ñ=4cos¦È£®
Ô²C2µÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£ºx2+£¨y-1£©2=1£¬
Õ¹¿ªÎª£ºx2+y2-2y=0£¬¿ÉµÃ¼«×ø±ê·½³Ì£º¦Ñ2-2¦Ñsin¦È=0£¬¼´¦Ñ=2sin¦È£®
£¨2£©°ÑÉäÏß$OM£º¦È=¦Á£¨0£¼¦Á£¼\frac{¦Ð}{2}£©$´úÈëÔ²C1µÄ¼«×ø±ê·½³Ì¿ÉµÃ£º¦Ñ1=4cos¦Á£®
°ÑÉäÏß$OM£º¦È=¦Á£¨0£¼¦Á£¼\frac{¦Ð}{2}£©$´úÈëÔ²C2µÄ¼«×ø±ê·½³Ì¿ÉµÃ£º¦Ñ2=2sin¦Á£®
|OP|•|OQ|=8cos¦Á•sin¦Á=4sin2¦Á¡Ü4£¬Æä×î´óֵΪ4£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¼°ÆäÓ¦ÓᢲÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Èý½Çº¯ÊýÇóÖµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-2£¬2]£¬ÇÒf£¨x£©ÔÚ[-2£¬2]ÉÏÊÇÔöº¯Êý£¬f£¨1-m£©£¼f£¨m£©£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨\frac{1}{2}£¬+¡Þ£©$B£®$£¨-¡Þ£¬\frac{1}{2}£©$C£®$£¨{\frac{1}{2}£¬2}]$D£®$[{-2£¬\frac{1}{2}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èôº¯Êýf£¨x£©ÔÚÇø¼äAÉÏ£¬¶Ô?a£¬b£¬c¡ÊA£¬f£¨a£©£¬f£¨b£©£¬f£¨c£©ÎªÒ»¸öÈý½ÇÐεÄÈý±ß³¤£¬Ôò³Æº¯Êýf£¨x£©Îª¡°Èý½ÇÐκ¯Êý¡±£®ÒÑÖªº¯Êýf£¨x£©=xlnx+mÔÚÇø¼ä$[{\frac{1}{e^2}£¬e}]$ÉÏÊÇ¡°Èý½ÇÐκ¯Êý¡±£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨$\frac{{e}^{2}+2}{e}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÉèÈ«¼¯U=R£¬A={x|-2£¼x£¼1}£¬B={x|2x£¾1}£¬ÔòA¡É£¨∁UB£©=£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨-2£¬0£©C£®£¨-2£¬0]D£®£¨-2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¶Ô?x¡Ê£¨0£¬+¡Þ£©²»µÈʽ£¨2x-2a+ln$\frac{x}{a}$£©£¨-2x2+ax+5£©¡Ü0ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ¼¯ºÏΪ{$\sqrt{5}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{a}{x}$£¨a£¾0£©£¬Èô¶ÔÈÎÒâµÄm¡¢n¡¢$p¡Ê[\frac{1}{3}£¬1]$£¬³¤Îªf£¨m£©¡¢f£¨n£©¡¢f£¨p£©µÄÈýÌõÏ߶ξù¿ÉÒÔ¹¹³ÉÈý½ÇÐΣ¬ÔòÕýʵÊýaµÄȡֵ·¶Î§ÊÇ£¨$\frac{1}{15}$£¬$\frac{1}{9}$£©¡È[1£¬$\frac{5}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬MΪA1C1µÄÖе㣬Èô$\overrightarrow{AB}=\vec a$£¬$\overrightarrow{BC}=\vec b$£¬$\overrightarrow{A{A_1}}=\vec c$£¬Ôò$\overrightarrow{BM}$¿É±íʾΪ£¨¡¡¡¡£©
A£®$-\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$B£®$\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$C£®$-\frac{1}{2}\vec a-\frac{1}{2}\vec b+\vec c$D£®$\frac{1}{2}\vec a-\frac{1}{2}\vec b+\vec c$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=x3+3x2-9x-3
£¨¢ñ£©Èôº¯Êýf£¨x£©Ôڵ㣨x0£¬f£¨x0£©£©´¦µÄÇÐÏßlÓëÖ±Ïßx-9y+1=0´¹Ö±£¬ÇóÇÐÏßlµÄ·½³Ì£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÎÒ¹ú¹Å´úÊýÑ§Öø×÷¡¶¾ÅÕÂËãÊõ¡·ÓÐÈçÏÂÎÊÌ⣺¡°½ñÓнðÕÈ£¬³¤Îå³ß£¬Õ¶±¾Ò»³ß£¬ÖØËĽնĩһ³ß£¬Öضþ½ï£®ÎÊ´ÎÒ»³ß¸÷ÖØ¼¸ºÎ£¿¡±Æä´óÒâÊÇ£º¡°ÏÖÓÐÒ»¸ù³¤Îå³ßµÄ½ðÕÈ£¬Ò»Í·´Ö£¬Ò»Í·Ï¸£®ÔÚ´ÖµÄÒ»¶Ë½ØÏÂ1³ßÖØ4½ï£®ÔÚϸµÄÒ»¶Ë½ØÏÂ1³ß£¬ÖØ2½ï£®ÎÊÒÀ´Îÿһ³ß¸÷ÖØ¶àÉٽ¡±¸ù¾ÝÉÏÃæµÄÒÑÖªÌõ¼þ£¬Èô½ðÕÈÓÉ´Öµ½Ï¸ÊǾùÔȱ仯µÄ£¬Ôò½ðÕȵÄÖÊÁ¿Îª£¨¡¡¡¡£©
A£®12½ïB£®15½ïC£®15.5½ïD£®18½ï

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸