精英家教网 > 高中数学 > 题目详情
16.设全集U=R,A={x|-2<x<1},B={x|2x>1},则A∩(∁UB)=(  )
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

分析 解不等式求出集合B,根据补集与交集的定义计算即可.

解答 解:全集U=R,A={x|-2<x<1},
B={x|2x>1}={x|x>0},
∴∁UB={x|x≤0},
∴A∩(∁UB)={x|-2<x≤0}=(-2,0].
故选:C.

点评 本题考查了解不等式与集合的基本运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$ (t为参数,0<α<$\frac{π}{2}$),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos2θ+2cosθ=ρ(ρ≥0,0≤θ<2π),直线l与曲线C交于A,B两点.
(1)求证:$\overrightarrow{OA}$•$\overrightarrow{OB}$是定值;
(2)若定点P(1,0),且|PA|=2|PB|,求直线1的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的一个顶点为A(0,-1),焦点在x轴上,其右焦点到直线$x-y+2\sqrt{2}=0$的距离为3.
(1)求椭圆C的方程;
(2)设直线l:y=x+m,是否存在实数m,使直线l与椭圆C有两个不同的交点M,N,且|AM|=|AN|,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R
 (1)求f(x)的最小正周期及单调减区间;
(2)求f(x)在闭区间$[-\frac{π}{4}$,$\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知△ABC的面积为1,∠A的平分线交对边BC于D,AB=2AC,且AD=kAC,k∈R,则当k=$\frac{2\sqrt{10}}{5}$时,边BC的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=3,|{\overrightarrow a-\overrightarrow b}|=2$,则$\frac{{|{\overrightarrow a}|}}{\overrightarrow a•\overrightarrow b}$的取值范围是[$\frac{2}{5}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,圆C1和C2的参数方程分别是$\left\{\begin{array}{l}x=2+2cosφ\\ y=2sinφ\end{array}\right.$(φ为参数)和$\left\{\begin{array}{l}x=cosβ\\ y=1+sinβ\end{array}\right.$(β为参数),以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系;
(1)求圆C1和C2的极坐标方程;
(2)射线$OM:θ=α(0<α<\frac{π}{2})$与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.袋中有2个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出1个白球为止.求取球次数X的概率分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$,参数α∈(0,π),M为C1上的动点,满足条件$\overrightarrow{OM}=2\overrightarrow{OP}$的点P的轨迹为曲线C2
(Ⅰ)求C2的普通方程;
(Ⅱ)在以O为极点,x轴的非负半轴为极轴的极坐标系中,射线$θ=\frac{π}{3}$与C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案