| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.
解答 解:因为g(I)={y|y=g(x),x∈I},f-1([0,1))=[1,2),f-1(2,4])=[0,1),
所以对于函数f(x),
当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)-x=0即f(x)=x无解;
当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)-x=0即f(x)=x无解;
所以当x∈[0,2)时方程f(x)-x=0即f(x)=x无解,
又因为方程f(x)-x=0有解x0,且定义域为[0,3],
故当x∈[2,3]时,f(x)的取值应属于集合(-∞,0)∪[1,2]∪(4,+∞),
故若f(x0)=x0,只有x0=2,
故选B.
点评 本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (0,1) | C. | (-2,2) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | 2 | D. | 不能确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com