精英家教网 > 高中数学 > 题目详情
10.对区间I上有定义的函数f(x),记f(I)={y|y=f(x),x∈I},已知函数y=f(x)的定义域为[0,3],自变量x与因变量y一一对应,且f([1,2])=[0,1),f([0,1])=[2,4),若方程f(x)-x=0有解x0,则x0=(  )
A.1B.2C.3D.4

分析 根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.

解答 解:因为g(I)={y|y=g(x),x∈I},f-1([0,1))=[1,2),f-1(2,4])=[0,1),
所以对于函数f(x),
当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)-x=0即f(x)=x无解;
当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)-x=0即f(x)=x无解;
所以当x∈[0,2)时方程f(x)-x=0即f(x)=x无解,
又因为方程f(x)-x=0有解x0,且定义域为[0,3],
故当x∈[2,3]时,f(x)的取值应属于集合(-∞,0)∪[1,2]∪(4,+∞),
故若f(x0)=x0,只有x0=2,
故选B.

点评 本题考查函数的零点及反函数,考查学生分析解决问题的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.不等式x2(x-4)≥0的解集是{x|x≥4或x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列有关命题的叙述,错误的个数为(  )
①若p∨q为真命题,则p∧q为真命题.
②“x>5”是“x2-4x-5>0”的充分不必要条件.
③命题P:?x∈R,使得x2+x-1<0,则¬p:?x∈R,使得x2+x-1≥0.
④命题“若x2-3x+2=0,则x=1”的否命题为假命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,a1=1,S2n=2an2+an
(1)求数列{an}的通项公式;
(2)若bn=2an,求b1+b3+b5+…+b2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.化简求值:
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$+(0.002)${\;}^{-\frac{1}{2}}}$-10(${\sqrt{5}$-2)-1
(2)[(1-log63)2+log62•log618]÷log64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算下列各式:
(1)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}}$;
(2)log98log29-(lg$\frac{5}{2}$+2lg2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某人欲从某车站乘车出差,已知该站发往各站的客车平均每小时一班,则此人等车时间不多于10分钟的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{10}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|log2x<1},B={x|x2+x-2<0},则A∩B=(  )
A.(-∞,2)B.(0,1)C.(-2,2)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知z1,z2是两个不相等的复数且z1=1+i,则复数$\frac{{z}_{1}-{z}_{2}}{2-{\overline{{z}_{1}}z}_{2}}$的模为(  )
A.$\frac{\sqrt{2}}{2}$B.1C.2D.不能确定

查看答案和解析>>

同步练习册答案