精英家教网 > 高中数学 > 题目详情
3.在△ABC中,设向量$\overrightarrow m=({sinA+sinB,sinC})$,$\overrightarrow n=({sinA+sinB,-sinC})$,$\overrightarrow m•\overrightarrow n=3sinA•sinB$.
(1)求C的值;
(2)求sinA+sinB的取值范围.

分析 (1)利用向量的数量积以及正弦定理余弦定理转化求解C的值;
(2)利用三角形内角关系,通过两角和与差的三角函数化简函数的解析式,即可求解表达式的范围.

解答 (本小题满分12分)
解:(1)由$\overrightarrow m•\overrightarrow n=3sinA•sinB$,(sinA+sinB)2-sin2C=3sinA•sinB,…(1分)
由正弦定理,等式可为(a+b)2-c2=3ab,
∴a2+b2-c2=ab,…(3分)
由余弦定理可得$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}$=$\frac{ab}{2ab}=\frac{1}{2}$,
∴∠C=$\frac{π}{3}$…(6分)
(2)由(1)可知,$A+B=\frac{2π}{3}$,所以$B=\frac{2π}{3}-A$,…(7分)
sinA+sinB=$sinA+sin({\frac{2π}{3}-A})$=$\frac{{\sqrt{3}}}{2}cosA+\frac{3}{2}sinA$=$\sqrt{3}({\frac{1}{2}cosA+\frac{{\sqrt{3}}}{2}sinA})$=$\sqrt{3}sin({\frac{π}{6}+A})$,…(10分)
∵$0<A<\frac{2π}{3}$,∴$\frac{π}{6}<\frac{π}{6}+A<\frac{5}{6}π$,∴$\frac{{\sqrt{3}}}{2}<\sqrt{3}sin({\frac{π}{6}+A})≤\sqrt{3}$,
∴sinA+sinB的取值范围为$({\frac{{\sqrt{3}}}{2},\sqrt{3}}]$…(12分)

点评 本题考查向量的数量积以及两角和与差的三角函数,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设数列{an}满足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超过x的最大整数,则$[\frac{2017}{{a}_{1}}+\frac{2017}{{a}_{2}}+…+\frac{2017}{{a}_{2017}}]$=(  )
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知角α的终边上有一点p(1,2),
(1)求tan($α+\frac{π}{4}$)的值;
(2)求sin(2$α+\frac{5π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.立方体ABCD-A1B1C1D1中,棱长为3,P为BB1的中点,则四棱锥P-AA1C1C的体积为27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.世界最大单口径射电望远镜FAST于2016年9月25日在贵州省黔南州落成启用,它被誉为“中国天眼”,从选址到启用历经22年,FAST选址从开始一万多个地方逐一审查.为了加快选址工作进度,将初选地方分配给工作人员.若分配给某个研究员8个地方,其中有三个地方是贵州省的,问:某月该研究员从这8个地方中任选2个地方进行实地研究,则这个月他能到贵州省的概率为(  )
A.$\frac{3}{28}$B.$\frac{15}{28}$C.$\frac{3}{7}$D.$\frac{9}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D-AP-C的余弦值为$\frac{{\sqrt{6}}}{3}$,求PF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an},{bn}的前n项和分别为An,Bn,且A1000=2,B1000=1007.记Cn=an•Bn+bn•An-an•bn(n∈N*),则数列{Cn}的前1000项的和为2014.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,D在BC上,AD平分∠BAC,若AB=3,AC=1,∠BAC=60°,则AD=$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}和等比数列{bn}中,已知a1=-8,a2=-2,b1=1,b2=2,那么满足an=bn的n的所有取值构成的集合是{3,5}.

查看答案和解析>>

同步练习册答案