分析 根据余弦定理求出BC的长度,在△ABD和△ADC中,利用余弦建立等式关系求出AD即可.
解答 解:在△ABC中,AB=3,AC=1,∠BAC=60°,
余弦定理:可得BC2=AB2+AC2-2AB•AC•cos60°
即BC=$\sqrt{7}$.
在△ADC中,设BD=m,则DC=$\sqrt{7}-m$.
余弦定理:可得DC2=AD2+AC2-2AD•AC•cos30°
即($\sqrt{7}-m$)2=AD2+1-$\sqrt{3}$AD…①,
在△ABD中:
余弦定理:可得DB2=AD2+AB2-2AD•AB•cos30°
即:m2=AD2+9-$3\sqrt{3}$AD…②,
由①②求解得:AD=$\frac{3\sqrt{3}}{4}$.
故答案为:$\frac{3\sqrt{3}}{4}$.
点评 本题余弦定理的运用和计算能力.属于基础题.解题时要注意余弦定理的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com