11£®ÒÑÖªµãAΪÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µã£¬P£¨$\frac{8}{3}$£¬$\frac{b}{3}$£©ÊÇÍÖÔ²EÉϵÄÒ»µã£¬ÒÔAPΪֱ¾¶µÄÔ²¾­¹ýÍÖÔ²EµÄÓÒ½¹µãF£¬Ö±ÏßlÓëÍÖÔ²ÏཻÓÚB¡¢CÁ½µã£¬ÇÒÂú×ãkOB•kOC=-$\frac{1}{2}$£¬OÎª×ø±êÔ­µã
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÇóÖ¤£º¡÷OBCµÄÃæ»ýΪ¶¨Öµ£®

·ÖÎö £¨1£©ÓÉÓÚÒÔAPΪֱ¾¶µÄÔ²¾­¹ýÍÖÔ²CµÄÓÒ½¹µãF£¬¿ÉµÃ$\overrightarrow{PF}$•$\overrightarrow{AF}$=c£¨c-$\frac{8}{3}$£©+$\frac{1}{3}$b2=0£®°ÑµãP£¨$\frac{8}{3}$£¬$\frac{b}{3}$£©´úÈëÍÖÔ²µÄ·½³ÌΪ$\frac{64}{9{a}^{2}}$+$\frac{1}{9}$=1£¬Óëb2+c2=a2ÁªÁ¢½â³ö¼´¿ÉµÃ³öa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±ÏßlµÄбÂʲ»´æÔںʹæÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÓÉбÂʵĹ«Ê½£¬»¯¼ò¿ÉµÃt2=2+4k2£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ£¬¼´¿ÉµÃµ½¡÷OBCµÄÃæ»ýΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©A£¨0£¬b£©£¬
¡ßÒÔAPΪֱ¾¶µÄÔ²¾­¹ýÍÖÔ²CµÄÓÒ½¹µãF£¬¡àPF¡ÍAF£¬
¡à$\overrightarrow{PF}$•$\overrightarrow{AF}$=£¨c-$\frac{8}{3}$£¬-$\frac{b}{3}$£©•£¨c£¬-b£©=c£¨c-$\frac{8}{3}$£©+$\frac{1}{3}$b2=0£®
°ÑµãP£¨$\frac{8}{3}$£¬$\frac{b}{3}$£©´úÈëÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄ·½³ÌΪ£º$\frac{64}{9{a}^{2}}$+$\frac{1}{9}$=1£¬
½âµÃa2=8£¬¡àb2+c2=8£¬
¿ÉµÃb2=8-c2£¬´úÈëc£¨c-$\frac{8}{3}$£©+$\frac{1}{3}$b2=0£¬½âµÃc=2£¬b=2£®
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©Ö¤Ã÷£ºµ±Ö±ÏßlµÄбÂʲ»´æÔÚ£¬Áîx=m£¬´úÈëÍÖÔ²·½³Ì£¬
¿ÉµÃy=¡À2$\sqrt{1-\frac{{m}^{2}}{8}}$£¬ÓÉkOB•kOC=-$\frac{1}{2}$£¬¿ÉµÃ$\frac{-4£¨1-\frac{{m}^{2}}{8}£©}{{m}^{2}}$=-$\frac{1}{2}$£¬
½âµÃm=¡À2£¬½»µãΪ£¨2£¬¡À$\sqrt{2}$£©»ò£¨-2£¬¡À$\sqrt{2}$£©£¬
¼´ÓС÷OBCµÄÃæ»ýΪ$\frac{1}{2}$¡Á2¡Á2$\sqrt{2}$=2$\sqrt{2}$£»
µ±Ð±ÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬´úÈëÍÖÔ²·½³Ìx2+2y2=8£¬
¿ÉµÃ£¨1+2k2£©x2+4ktx+2t2-8=0£¬
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬Ôòx1+x2=-$\frac{4kt}{1+2{k}^{2}}$£¬x1x2=$\frac{2{t}^{2}-8}{1+2{k}^{2}}$£¬
|x1-x2|=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{16{k}^{2}{t}^{2}}{£¨1+2{k}^{2}£©^{2}}-\frac{8{t}^{2}-32}{1+2{k}^{2}}}$=$\frac{2\sqrt{8+16{k}^{2}-2{t}^{2}}}{1+2{k}^{2}}$£¬
ÓÉkOB•kOC=-$\frac{1}{2}$£¬¿ÉµÃ$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$£¬
¼´Îªx1x2+2y1y2=0£¬ÓÉy1=kx1+t£¬y2=kx2+t£¬
¿ÉµÃ£¨1+2k2£©x1x2+2kt£¨x1+x2£©+2t2=0£¬
¼´ÓУ¨1+2k2£©•$\frac{2{t}^{2}-8}{1+2{k}^{2}}$+2kt£¨-$\frac{4kt}{1+2{k}^{2}}$£©+2t2=0£¬
»¯¼ò¿ÉµÃ£¬t2=2+4k2£¬
¼´ÓÐ|x1-x2|=$\frac{4\sqrt{2{t}^{2}}}{{t}^{2}}$=$\frac{4\sqrt{2}}{|t|}$£¬
Ô­µãµ½Ö±Ïßy=kx+tµÄ¾àÀëΪd=$\frac{|t|}{\sqrt{1+{k}^{2}}}$£¬
¿ÉµÃ¡÷OBCµÄÃæ»ýΪS=$\frac{1}{2}$d|BC|
=$\frac{1}{2}$•$\frac{|t|}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{2}}{|t|}$=2$\sqrt{2}$£®
×ÜÊǿɵá÷OBCµÄÃæ»ýΪ¶¨Öµ2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬Èý½ÇÐεÄÃæ»ý¹«Ê½µÄÔËÓ㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É輯ºÏA={x|x£¼1}£¬B={x¡ÊZ|x2¡Ü4}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{-2£¬1£¬0}B£®{-2£¬-1£¬0£¬1£¬2}C£®{-1£¬0}D£®{-2£¬-1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÏȺóÖÀÁ½´Î÷»×Ó£¨÷»×ÓµÄÁù¸öÃæÉÏ·Ö±ðÓÐ1£¬2£¬3£¬4£¬5£¬6¸öµã£©£¬ÂäÔÚˮƽ×ÀÃæºó£¬¼ÇÕýÃæ³¯ÉϵÄ
µãÊý·Ö±ðΪx£¬y£¬¼ÇʼþAΪ¡°x£¬y¶¼ÎªÅ¼ÊýÇÒx¡Ùy¡±£¬ÔòA·¢ÉúµÄ¸ÅÂÊP£¨A£©Îª£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{6}$C£®$\frac{1}{3}$D£®$\frac{1}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Âú×ãÔ¼ÊøÌõ¼þ|x|+2|y|¡Ü2µÄÄ¿±êº¯Êýz=y-xµÄ×î´óֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÕýÈý½ÇÐÎPQRµÄ¶¥µãRÔÚCµÄ×ó×¼ÏßlÉÏ£¬P¡¢QÔÚÍÖÔ²ÉÏ£¬ÇÒÏß¶ÎPQ¾­¹ý×ó½¹µãF1£¬KPQ=1£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©ÍÖÔ²ÉÏÊÇ·ñ´æÔÚ¹ØÓÚÖ±ÏßPQ¶Ô³ÆµÄÁ½µã£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÉèHΪÍÖÔ²ÉÏÒ»¶¯µã£¬KÊÇxÕý°ëÖáÉÏÒ»¶¨µã£¬Âú×ãOA=3OK£¨AΪÍÖÔ²ÓÒ¶¥µã£©£¬µ±HK+HF1µÄ×î´óֵΪ5+$\sqrt{6}$ʱ£¬ÇóÍÖÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªf£¨x£©=$\frac{3+5¡Á£¨{-1£©}^{x}}{2}$£¬ÔòÈçͼËùʾµÄ³ÌÐò¿òͼÔËÐÐÖ®ºóÊä³öµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®3016B£®3020C£®3024D£®3028

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Çóº¯Êýy=2tan$\frac{x}{3}$µÄ¶¨ÒåÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬ÇÒµ±n¡Ý2£¬ÇÒn¡ÊN*ʱ£¬ÓÐ$\frac{{a}_{n-1}}{{a}_{n}}$=$\frac{{a}_{n-1}+2}{2-{a}_{n}}$£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{1}{{a}_{n}}$}ΪµÈ²îÊýÁУ»
£¨2£©ÒÑÖªº¯Êýf£¨n£©=£¨$\frac{9}{10}$£©n£¨n¡ÊN*£©£¬ÊÔÎÊÊýÁÐ{$\frac{f£¨n£©}{{a}_{n}}$}ÊÇ·ñ´æÔÚ×î´óÏÈç¹û´æÔÚ£¬Çó³ö×î´óÏÈç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªA£¬B£¬CÈýµã²»¹²Ïߣ¬¶ÔÆ½ÃæABCÍâÒ»µãO£¬¸ø³öÏÂÁбí´ïʽ£º$\overrightarrow{OM}=x\overrightarrow{OA}+y\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$ÆäÖÐx£¬yÊÇʵÊý£¬ÈôµãMÓëA£¬B£¬CËÄµã¹²Ãæ£¬Ôòx+yΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{3}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸