·ÖÎö £¨1£©ÓÉÓÚÒÔAPΪֱ¾¶µÄÔ²¾¹ýÍÖÔ²CµÄÓÒ½¹µãF£¬¿ÉµÃ$\overrightarrow{PF}$•$\overrightarrow{AF}$=c£¨c-$\frac{8}{3}$£©+$\frac{1}{3}$b2=0£®°ÑµãP£¨$\frac{8}{3}$£¬$\frac{b}{3}$£©´úÈëÍÖÔ²µÄ·½³ÌΪ$\frac{64}{9{a}^{2}}$+$\frac{1}{9}$=1£¬Óëb2+c2=a2ÁªÁ¢½â³ö¼´¿ÉµÃ³öa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±ÏßlµÄбÂʲ»´æÔںʹæÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÓÉбÂʵĹ«Ê½£¬»¯¼ò¿ÉµÃt2=2+4k2£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ£¬¼´¿ÉµÃµ½¡÷OBCµÄÃæ»ýΪ¶¨Öµ£®
½â´ð ½â£º£¨1£©A£¨0£¬b£©£¬
¡ßÒÔAPΪֱ¾¶µÄÔ²¾¹ýÍÖÔ²CµÄÓÒ½¹µãF£¬¡àPF¡ÍAF£¬
¡à$\overrightarrow{PF}$•$\overrightarrow{AF}$=£¨c-$\frac{8}{3}$£¬-$\frac{b}{3}$£©•£¨c£¬-b£©=c£¨c-$\frac{8}{3}$£©+$\frac{1}{3}$b2=0£®
°ÑµãP£¨$\frac{8}{3}$£¬$\frac{b}{3}$£©´úÈëÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄ·½³ÌΪ£º$\frac{64}{9{a}^{2}}$+$\frac{1}{9}$=1£¬
½âµÃa2=8£¬¡àb2+c2=8£¬
¿ÉµÃb2=8-c2£¬´úÈëc£¨c-$\frac{8}{3}$£©+$\frac{1}{3}$b2=0£¬½âµÃc=2£¬b=2£®
¡àÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©Ö¤Ã÷£ºµ±Ö±ÏßlµÄбÂʲ»´æÔÚ£¬Áîx=m£¬´úÈëÍÖÔ²·½³Ì£¬
¿ÉµÃy=¡À2$\sqrt{1-\frac{{m}^{2}}{8}}$£¬ÓÉkOB•kOC=-$\frac{1}{2}$£¬¿ÉµÃ$\frac{-4£¨1-\frac{{m}^{2}}{8}£©}{{m}^{2}}$=-$\frac{1}{2}$£¬
½âµÃm=¡À2£¬½»µãΪ£¨2£¬¡À$\sqrt{2}$£©»ò£¨-2£¬¡À$\sqrt{2}$£©£¬
¼´ÓС÷OBCµÄÃæ»ýΪ$\frac{1}{2}$¡Á2¡Á2$\sqrt{2}$=2$\sqrt{2}$£»
µ±Ð±ÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬´úÈëÍÖÔ²·½³Ìx2+2y2=8£¬
¿ÉµÃ£¨1+2k2£©x2+4ktx+2t2-8=0£¬
ÉèB£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬Ôòx1+x2=-$\frac{4kt}{1+2{k}^{2}}$£¬x1x2=$\frac{2{t}^{2}-8}{1+2{k}^{2}}$£¬
|x1-x2|=$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{16{k}^{2}{t}^{2}}{£¨1+2{k}^{2}£©^{2}}-\frac{8{t}^{2}-32}{1+2{k}^{2}}}$=$\frac{2\sqrt{8+16{k}^{2}-2{t}^{2}}}{1+2{k}^{2}}$£¬
ÓÉkOB•kOC=-$\frac{1}{2}$£¬¿ÉµÃ$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$£¬
¼´Îªx1x2+2y1y2=0£¬ÓÉy1=kx1+t£¬y2=kx2+t£¬
¿ÉµÃ£¨1+2k2£©x1x2+2kt£¨x1+x2£©+2t2=0£¬
¼´ÓУ¨1+2k2£©•$\frac{2{t}^{2}-8}{1+2{k}^{2}}$+2kt£¨-$\frac{4kt}{1+2{k}^{2}}$£©+2t2=0£¬
»¯¼ò¿ÉµÃ£¬t2=2+4k2£¬
¼´ÓÐ|x1-x2|=$\frac{4\sqrt{2{t}^{2}}}{{t}^{2}}$=$\frac{4\sqrt{2}}{|t|}$£¬
Ե㵽ֱÏßy=kx+tµÄ¾àÀëΪd=$\frac{|t|}{\sqrt{1+{k}^{2}}}$£¬
¿ÉµÃ¡÷OBCµÄÃæ»ýΪS=$\frac{1}{2}$d|BC|
=$\frac{1}{2}$•$\frac{|t|}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{4\sqrt{2}}{|t|}$=2$\sqrt{2}$£®
×ÜÊǿɵá÷OBCµÄÃæ»ýΪ¶¨Öµ2$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬Èý½ÇÐεÄÃæ»ý¹«Ê½µÄÔËÓ㬿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {-2£¬1£¬0} | B£® | {-2£¬-1£¬0£¬1£¬2} | C£® | {-1£¬0} | D£® | {-2£¬-1} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{6}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{12}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3016 | B£® | 3020 | C£® | 3024 | D£® | 3028 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{3}$ | D£® | $\frac{3}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com