精英家教网 > 高中数学 > 题目详情
3.求函数y=2tan$\frac{x}{3}$的定义域.

分析 由$\frac{x}{3}$的终边不在y轴上,可得$\frac{x}{3}≠\frac{π}{2}+kπ,k∈Z$,求出x的范围得答案.

解答 解:由$\frac{x}{3}≠\frac{π}{2}+kπ,k∈Z$,得$x≠\frac{3}{2}π+3kπ,k∈Z$.
∴函数y=2tan$\frac{x}{3}$的定义域为{x|$x≠\frac{3}{2}π+3kπ,k∈Z$}.

点评 本题考查正切函数的定义域,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若集合A={x|y=lnx},B={x|x2-x>0},则A∩B=(  )
A.[0,1]B.(-∞,0)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=|{x-a}|+|{x-\frac{1}{2}}|,x∈R$
(Ⅰ)当$a=\frac{5}{2}$时,解不等式f(x)≤x+10;
(Ⅱ)关于x的不等式f(x)≥a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A为椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点,P($\frac{8}{3}$,$\frac{b}{3}$)是椭圆E上的一点,以AP为直径的圆经过椭圆E的右焦点F,直线l与椭圆相交于B、C两点,且满足kOB•kOC=-$\frac{1}{2}$,O为坐标原点
(1)求椭圆E的方程;
(2)求证:△OBC的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,M是AB的中点,N是AC上一点,且$\overrightarrow{NC}$=2$\overrightarrow{AN}$,BN与CM相交于一点P.$\overrightarrow{AP}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,则λ+μ=(  )
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知tanα=3,则sinαsin($\frac{3π}{2}$-α)的值是-$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设点A1、A2分别为椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的下顶点和上顶点,若在椭圆上存在点P使得${k}_{P{A}_{1}}$•${k}_{P{A}_{2}}$>-3,则椭圆C的离心率的取值范围是(  )
A.($\frac{\sqrt{6}}{3}$,1)B.(0,$\frac{\sqrt{6}}{3}$)C.(0,$\frac{2}{3}$)D.($\frac{2}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.四对夫妇坐成一排照相:
(1)每对夫妇都不能隔开的排法有多少种?
(2)每对夫妇不能隔开,且同性别的人不能相邻的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x|,g(x)=-|x-a|+m.
(1)解关于x的不等式g[f(x)]+2-m>0;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.

查看答案和解析>>

同步练习册答案