精英家教网 > 高中数学 > 题目详情
(12分) 一盒中装有分别标记着1,2,3,4的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同.
(1)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率;
(2)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求的分布列与数学期望.
(1) ;                      
(2)的分布列为 
 
所以,  
本题考查概率的性质和应用、离散型随机变量及其分布列,解题时要认真审题,仔细解答,注意离散型随机变量概率分布列的求法,属于中档题.
(1)四个球中取三个,由于小球编号不同,故取法共有A43,若第三次取出的标号为最大数字,此数字可能是3或4,分别求出符合题意的种数即可;
(2)ξ的取值为1、2、3、4,然后根据 P(ξ=k)=()3+C 23 ()2(k- )+3 ()(k-  )2求出相应的概率,列出分布列,最后利用数学期望公式进行求解即可
解:(1)当恰好第三次取出的球的标号为最大数字时,则第三次取出的球可能是3或4
得:                        
(2)的可能取值为1,2,3,4
 


   
的分布列为 
 
所以,  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知某离散型随机变量服从的分布列如图,则随机变量的方差等于    (    )






A.            B.           C.            D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)为增强市民交通规范意识,我市面向全市征召劝导员志愿者,分布于各候车亭或十字路口处.现从符合条件的500名志愿者中随机抽取100名志愿者,他们的年龄情况如下表所示.
(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[30,35)岁的人数;
(2)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加“规范摩的司机的交通意识”培训活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.
分组(单位:岁)
频数
频率
[20,25)
5
0.05
[25,30)

0.20
[30,35)
35

[35,40)
30
0.30
[40,45]
10
0.10
合计
100
1.00
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量的概率分布和数学期望;
(3)计分介于20分到40分之间的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设随机变量X~B(2,p),Y~B(3,p),若P(X)=,则P(Y)=___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在一次人才招聘会上,有三种不同的技工面向社会招聘,已知某技术人员应聘三种技工被录用的概率分别是0.8、0.5、0.2(允许技工人员同时被多种技工录用).
(1)求该技术人员被录用的概率;
(2)设表示该技术人员被录用的工种数与未被录用的工种数的乘积,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

随机抽取某厂的某种产品100件,经质检,其中有一等品63件、二等品25件、三等品10件、次品2件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为
(1)求的分布列;
(2)求1件产品的平均利润(即的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为,一等品率提高为.如果此时要求1件产品的平均利润不小于5.13万元,则三等品率最多是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为参加2012年伦敦奥运会,某旅游公司为三个旅游团提供了四条旅游线路,每个旅游团可任选其中一条线路,则选择线路旅游团数的数学期望        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设离散型随机变量满足,则等于(   )
A.27B.24C.9D.6

查看答案和解析>>

同步练习册答案