精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)若关于x的不等式mf(x)+2mx≤(1-m)(e-x-1)在(0,+∞)上恒成立,求实数m的取值范围.

分析 (1)利用导数的几何意义求得a,再利用导数法求得函数的极值;
(2)利用参数分离法,将不等式mf(x)+2mx≤(1-m)(e-x-1)在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围.

解答 解:(1)由f(x)=ex-ax得f′(x)=ex-a.
又f′(0)=1-a=-1,∴a=2,
∴f(x)=ex-2x,f′(x)=ex-2.
由f′(x)=0得x=ln2,
当x<ln2时,f′(x)<0,f(x)单调递减;
当x>ln2时,f′(x)>0,f(x)单调递增;
∴当x=ln2时,f(x)有极小值为f(ln2)=eln2-2ln2=2-ln4.
f(x)无极大值.
(2)若关于x的不等式mf(x)+2mx≤(1-m)(e-x-1)在(0,+∞)上恒成立,
即m(ex+e-x-1)≤e-x-1在(0,+∞)上恒成立,
∵x>0,
∴ex+e-x-1>0,
即m≤$\frac{{e}^{-x}-1}{{e}^{x}+{e}^{-x}-1}$在(0,+∞)上恒成立,
设t=ex,(t>1),则m≤$\frac{1-t}{{t}^{2}-t+1}$在(1,+∞)上恒成立,
∵$\frac{1-t}{{t}^{2}-t+1}$=-$\frac{1}{t-1+\frac{1}{t-1}+1}$≥-$\frac{1}{3}$,当且仅当t=2时等号成立,
∴m≤-$\frac{1}{3}$.

点评 该题主要考查导数的运算及导数的应用等基础知识,考查学生的运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、划归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(x+1)+ax2-2x+1;
(1)求函数曲线在x=0处的切线方程;
(2)函数f(x)不单调,求参数a的范围;
(3)曲线C:y=f(x)与(1)中的切线只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2-lnx,g(x)=(1-2a)x,a∈R.
(1)若f(x)有极小值$\frac{1}{2}$,求a的值;
(2)若a>0,且不等式ln(x+$\frac{1}{a}$)-x<-g(x)恒成立,求实数a的取值范围;
(3)若a>0,记函数φ(x)=f(x)+g(x)的图象为曲线C,设点A(x1,y1),B(x2,y2)是曲线C上不同的两点(x1<x2),且直线AB的斜率为k,求证:φ′($\frac{{x}_{1}+2{x}_{2}}{3}$)>k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E点在棱DD1上.
(1)当E是DD1的中点时,求异面直线AE与BD1所成角的余弦;
(2)当二面角E-AC-B1的平面角θ满足cosθ=$\frac{{\sqrt{6}}}{6}$时,求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四边形ABCD为梯形,AD∥BC,且AD=3BC.过A、C、D三点的平面记为a,BB1与a的交点为Q.则以下四个结论:①QC∥A1D;②B1Q=2QB;③直线A1B与直线CD相交;④四棱柱被平面a分成的上下两部分体积相等.其中正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax-lnx(a∈R)
(Ⅰ)求函数f(x)的单调区间
(Ⅱ)已知函数f(x)在x=1处取得极值,且x∈(0,+∞),f(x)≥bx-1恒成立,求b的取值范围
(Ⅲ)若n∈N*,比较n!与e${\;}^{\frac{{n}^{2}+9n}{8}}$的大小,(注:n!称为n的阶乘,且n!=n×(n-1)×(n-2)×…×2×1,e是自然对数的底数,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知菱形ABCD的边长为2,∠BAD=60°,现沿BD将△ABD折起并使得AC=$\sqrt{3}$(如图所示),则二面角A-BD-C的大小为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{2}{x^2}$-alnx(a>0).
(Ⅰ)若a=2,求函数f(x)的极值;
(Ⅱ)若?x>0,不等式f(x)-a≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断满足下列条件的三角形形状.
(1)acosA=bcosB;
(2)acosB=bcosA.

查看答案和解析>>

同步练习册答案