精英家教网 > 高中数学 > 题目详情
2.圆(x-2)2+y2=4被直线x=1截得的弦长为(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

分析 算出已知圆的圆心为C(2,0),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d=1,由垂径定理加以计算,可得直线l被圆截得的弦长.

解答 解:圆(x-2)2+y2=4的圆心为C(3,0),半径r=2,
∵点C到直线直线x=1的距离d=1,
∴根据垂径定理,得圆(x-2)2+y2=4被直线x=1截得的弦长为2$\sqrt{4-1}$=2$\sqrt{3}$
故选:D.

点评 本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如果直线l∥m,并且直线l⊥α,那么直线m与平面α的位置关系是m⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x,y∈(0,+∞),2x-1=($\frac{1}{2}$)y,若$\frac{1}{x}$+$\frac{m}{y}$(m>0)的最小值为3,则m的值为4-2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断方程$\left\{\begin{array}{l}{x=sinθ+\frac{1}{sinθ}}\\{y=sinθ-\frac{1}{sinθ}}\end{array}\right.$(θ是参数且θ∈(0,π))表示的曲线的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二次曲线$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)的焦点坐标为(  )
A.(±5,0)B.(0,5)C.(±$\sqrt{7}$,0)D.(0,±$\sqrt{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设O是坐标原点,若直线l:y=x+b(b>0)与圆x2+y2=4交于不同的两点P1、P2,且$|{\overrightarrow{{P_1}{P_2}}}|≥|{\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}}|$,则实数b的最大值是(  )
A.$\sqrt{2}$B.2C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在空间直角坐标系中,点M(0,2,-1)和点N(-1,1,0)的距离是$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$y={x^2}+\frac{1}{x}+1$在x=1处的切线方程是(  )
A.x-y+2=0B.x-y-4=0C.x+y-4=0D.x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(2,3,1),$\overrightarrow{b}$=(x,y,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x+y=10.

查看答案和解析>>

同步练习册答案