精英家教网 > 高中数学 > 题目详情
4.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有27种(用数字作答).
AB
CD

分析 根据题意,先分析A、B两个方格,由于其大小有序,则可以在l、2、3中的任选2个,大的放进A方格,小的放进B方格根据分类计数原理可得.

解答 解:若A方格填3,则排法有2×32=18种,
若A方格填2,则排法有1×32=9种,
根据分类计数原理,所以不同的填法有18+9=27种.
故答案为:27.

点评 本题考查了分类计数原理,如何分类是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在($\sqrt{2}$,+∞)上是减函数,则a的取值范围是(  )
A.[2$\sqrt{2}$,4)B.[2$\sqrt{2}$,$\sqrt{2}$+2]C.(-∞,2$\sqrt{2}$]D.[2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果$\overrightarrow{a}$、$\overrightarrow{b}$是单位向量,其夹角为$\frac{π}{2}$,且$\overrightarrow{c}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{d}$=k$\overrightarrow{a}$-4$\overrightarrow{b}$,$\overrightarrow{c}$⊥$\overrightarrow{d}$,则k=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2ax3-3x2+1,若 f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )
A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为(  )
12
0.51
x
y
z
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线2x-5y+20=0与坐标轴交于两点,以坐标轴为对称轴,以其中一个点为焦点且另一个点为虚轴端点的双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{84}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{84}$=1
C.$\frac{{x}^{2}}{100}$-$\frac{{y}^{2}}{84}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{84}$=1或$\frac{{x}^{2}}{100}$-$\frac{{y}^{2}}{84}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则(  )
A.$\overrightarrow{a}$与$\overrightarrow{b}$方向相同B.$\overrightarrow{a}$与$\overrightarrow{b}$方向相反C.$\overrightarrow{a}$与$\overrightarrow{b}$垂直D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,圆A与圆B交于C、D两点,圆心B在圆A上,DE为圆B的直径.已知CE=1,DE=4,则圆A的半径为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=lnx+2x,则不等式f(x2-3)<2的解集为(-2,$-\sqrt{3}$)∪($\sqrt{3}$,2).

查看答案和解析>>

同步练习册答案