精英家教网 > 高中数学 > 题目详情

设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数.
(2)当x∈[2,4]时,求f(x)的解析式.
(3)计算f(0)+f(1)+f(2)+…+f(2011)

(1)∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)是周期为4的周期函数.
(2)当x∈[-2,0]时,-x∈[0,2],由已知
f(-x)=2(-x)-(-x)2=-2x-x2
又f(x)为奇函数,∴-f(x)=-2x-x2.
∴f(x)=x2+2x.当x∈[2,4]时,x-4∈[-2,0].
∴f(x-4)=(x-4)2+2(x-4),
又f(x)是周期为4的周期函数,
∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8,
∴x∈[2,4]时,f(x)=x2-6x+8.
(3)∵f(0)=0,f(1)=1,f(2)=0,f(3)=-1.
又f(x)是周期为4的周期函数.
∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)
=…=f(2004)+f(2005)+f(2006)+f(2007)
=f(2010)+f(2009)+f(2010)+f(2011)=0.
∴f(0)+f(1)+…+f(2011)=0+…+0=0.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数在定义域上为增函数,且满足, .
(Ⅰ) 求的值;         
(Ⅱ)  解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,且
(1)确定函数的解析式;
(2)判断并证明的单调性;
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求的解析式及定义域。(Ⅱ)求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知定义在上的函数在区间上的最大值是,最小值是.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-xm,且f(4)=-.
(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数y=f(x)=x2-2x+4的定义域、值域都是闭区间[2,2b],求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(3)(本小题满分7分)选修4—5:不等式选讲
已知函数,不等式上恒成立.
(Ⅰ)求的取值范围;
(Ⅱ)记的最大值为,若正实数满足,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
(1)已知是一次函数,且,求的解析式;
(2)已知是二次函数,且,求的解析式.

查看答案和解析>>

同步练习册答案