精英家教网 > 高中数学 > 题目详情

(本小题满分10分)
已知函数在定义域上为增函数,且满足, .
(Ⅰ) 求的值;         
(Ⅱ)  解不等式.

解:(1)  ……4分
(2)
而函数f(x)是定义在上为增函数
         即原不等式的解集为 ……6分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求a的值;(2)判断的单调性(不需要写出理由);
(3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 . (1) 求函数的定义域;(2) 求证上是减函数;(3) 求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)设函数
(1)求它的定义域;(2)判断它的奇偶性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)判断y=1-2x3在(-)上的单调性,并用定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)集合A是由具备下列性质的函数f(x)组成的:
①函数f(x)的定义域是[0,+∞);
②函数f(x)的值域是[-2,4);
③函数f(x)在[0,+∞)上是增函数,试分别探究下列两小题:
(1)判断函数f1(x)=-2(x≥0)及f2(x)=4-6·x(x≥0)是否属于集合A?并简要说明理由;
(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0恒成立?若不成立,为什么?若成立,请说明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知满足不等式,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数.
(2)当x∈[2,4]时,求f(x)的解析式.
(3)计算f(0)+f(1)+f(2)+…+f(2011)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,则      

查看答案和解析>>

同步练习册答案