精英家教网 > 高中数学 > 题目详情
8.已知命题p:方程$\frac{x^2}{m-4}+\frac{y^2}{2m-2}=1$表示焦点在y轴上的双曲线,命题q:点(m,1)在椭圆$\frac{x^2}{8}+\frac{y^2}{2}=1$的内部;命题r:函数f(m)=log2(m-a)的定义域;
(1)若p∧q为真命题,求实数m的取值范围;
(2)若p是r的充分不必要条件,求实数a的取值范围.

分析 命题p:方程$\frac{x^2}{m-4}+\frac{y^2}{2m-2}=1$表示焦点在y轴上的双曲线,则$\left\{\begin{array}{l}{2m-2>0}\\{m-4<0}\end{array}\right.$,解得;命题q:点(m,1)在椭圆$\frac{x^2}{8}+\frac{y^2}{2}=1$的内部,则$\frac{{m}^{2}}{8}$+$\frac{1}{2}$<1,解得m;命题r:函数f(m)=log2(m-a)的定义域为(a,+∞).
(1)若p∧q为真命题,则$\left\{\begin{array}{l}{1<m<4}\\{-2<m<2}\end{array}\right.$,解得m.
(2)p是r的充分不必要条件,可得a≤1.

解答 解:命题p:方程$\frac{x^2}{m-4}+\frac{y^2}{2m-2}=1$表示焦点在y轴上的双曲线,则$\left\{\begin{array}{l}{2m-2>0}\\{m-4<0}\end{array}\right.$,解得1<m<4;
命题q:点(m,1)在椭圆$\frac{x^2}{8}+\frac{y^2}{2}=1$的内部,则$\frac{{m}^{2}}{8}$+$\frac{1}{2}$<1,解得:-2<m<2;
命题r:函数f(m)=log2(m-a)的定义域为(a,+∞).
(1)若p∧q为真命题,则$\left\{\begin{array}{l}{1<m<4}\\{-2<m<2}\end{array}\right.$,解得1<m<2.
∴实数m的取值范围为(1,2).
(2)∵p是r的充分不必要条件,
∴∴a≤1.
∴实数a的取值范围是a≤1.

点评 本题考查了圆锥曲线的标准方程及其性质、函数的定义域、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.公差为1的等差数列{an}中,a1,a3,a6成等比数列,则{an}的前10项和为(  )
A.65B.80C.85D.170

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.北京铁路局针对今年春运客流量进行数据整理,调查北京西站从2月4日到2月8日的客流量,根据所得数据画出了五天中每日客流量的频率分布图,为了更详细地分析不同时间的客流人群,按日期用分层抽样的方法抽样,若从2月7日这个日期抽取了40人,则一共抽取的人数为200.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设F1,F2是双曲线C:$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{m}=1$的两个焦点,点P在C上,且$\overrightarrow{P{F}_{1}}$$•\overrightarrow{P{F}_{2}}$=0,若抛物线y2=16x的准线经过双曲线C的一个焦点,则|$\overrightarrow{P{F}_{1}}$|$•|\overrightarrow{P{F}_{2}}$|的值等于(  )
A.2$\sqrt{2}$B.6C.14D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.经过A(-3,1),且平行于y轴的直线方程为x=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|x+1|-|2x-a|
(Ⅰ)当a=2,解不等式f(x)<0
(Ⅱ)若a>0,且对于任意的实数x,都有f(x)≤3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则该几何体的表面积等于(  )
A.B.C.16πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某中职学校高三年级5个班级的师生为庆祝教师节,每班学生准备了一个节目,已排成节目单,开演前又增加了3个教师节目,其中2个独唱节目,1个朗诵节目,如果将这3个节目插入原节目单中,要求教师的节目不排在第一个或最后一个,并且2个独唱节目不连续演出,则不同的插法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,$\overrightarrow{DQ}=λ\overrightarrow{DC}$,$\overrightarrow{CP}=(1-λ)\overrightarrow{CB}$,若集合M=$\{x|x=\overrightarrow{AP}•\overrightarrow{AQ}\}$,N=$\left\{{x\left|{x=\frac{{{a^2}+{b^2}+1}}{3(a-b)},a>b,ab=1}\right.}\right\}$.则M∩N=[$\frac{2\sqrt{3}}{3}$,2].

查看答案和解析>>

同步练习册答案