精英家教网 > 高中数学 > 题目详情
17.某中职学校高三年级5个班级的师生为庆祝教师节,每班学生准备了一个节目,已排成节目单,开演前又增加了3个教师节目,其中2个独唱节目,1个朗诵节目,如果将这3个节目插入原节目单中,要求教师的节目不排在第一个或最后一个,并且2个独唱节目不连续演出,则不同的插法有多少种?

分析 利用分步原理,插空法逐步分析探索,根据条件,5个节目,6个空隙,但有两个空不符合条件,故共有4个空隙.

解答 解:利用分步原理:
第一步:从教师节目2个独唱选一个独唱,选1个朗诵共有2种方法;
第二步:把这两个节目插入四个空隙中共有4×3=12种方法;
第三步:把最后一个独唱插入4个空隙中共有4种方法;
故不同的方法有2×12×4=96种.

点评 考查了排列组合的应用和分步原理的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知△ABC为等边三角形,点M在△ABC外,且MB=2MC=2,则MA的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:方程$\frac{x^2}{m-4}+\frac{y^2}{2m-2}=1$表示焦点在y轴上的双曲线,命题q:点(m,1)在椭圆$\frac{x^2}{8}+\frac{y^2}{2}=1$的内部;命题r:函数f(m)=log2(m-a)的定义域;
(1)若p∧q为真命题,求实数m的取值范围;
(2)若p是r的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知随机变量ξ-N(3,12),其概率P(ξ<3)=a,则二项式(x2-2a)2(x3+$\frac{1}{x}$)4的展开式中x8的系数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两名篮球运动员在7场比赛中的得分情况如茎叶所示,$\overline x$、$\overline x$分别表示甲、乙两人的平均得分,则下列判断正确的是(  )
A.$\overline x$>$\overline x$,甲比乙得分稳定B.$\overline x$>$\overline x$,乙比甲得分稳定
C.$\overline x$<$\overline x$,甲比乙得分稳定D.$\overline x$<$\overline x$,乙比甲得分稳定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a,b,c分别是△ABC中角A,B,C的对边长,b和c是关于x的方程x2-9x+25cosA=0的两个根(b>c),且$({sinB+sinC+sinA})({sinB+sinC-sinA})=\frac{18}{5}sinBsinC$,则△ABC的形状为(  )
A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ex-ae-x+(a+1)x+2a,若对于任意的x∈(0,+∞),都有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线被圆x2+y2-6x+5=0截得的弦长为2,则双曲线的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量法$\overrightarrow{{l}_{1}}$≠$\overrightarrow{0}$,λ∈R,$\overrightarrow{a}$=$\overrightarrow{{l}_{1}}$+λ$\overrightarrow{{l}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{l}_{2}}$,若向量$\overrightarrow{a}$和$\overrightarrow{b}$共线,则下列关系一定成立的是(  )
A.λ=0B.$\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$C.$\overrightarrow{{l}_{1}}$∥$\overrightarrow{{l}_{2}}$D.$\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$或λ=0

查看答案和解析>>

同步练习册答案