分析 设$\frac{y}{x}$=t>0,变形$\frac{x}{x+2y}+\frac{y}{x}$=$\frac{1}{1+2t}$+t=$\frac{1}{1+2t}$+$\frac{1}{2}(2t+1)$-$\frac{1}{2}$,再利用基本不等式的性质即可得出.
解答 解:设$\frac{y}{x}$=t>0,则$\frac{x}{x+2y}+\frac{y}{x}$=$\frac{1}{1+2t}$+t=$\frac{1}{1+2t}$+$\frac{1}{2}(2t+1)$-$\frac{1}{2}$≥$2\sqrt{\frac{1}{1+2t}×\frac{1+2t}{2}}$-$\frac{1}{2}$=$\sqrt{2}$-$\frac{1}{2}$,当且仅当$t=\frac{\sqrt{2}-1}{2}$=$\frac{y}{x}$时取等号.
故答案为:$\sqrt{2}$-$\frac{1}{2}$.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a⊥α,b⊥α,则a∥b | |
| B. | 若a⊥α,a⊥β,则α∥β | |
| C. | 若a∥α,b∥α,则a∥b | |
| D. | 若a,b是平面α内的相交直线,且a∥α,a∥β,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\sqrt{2}$] | B. | [$\sqrt{2}$-1,+∞) | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com