精英家教网 > 高中数学 > 题目详情
14.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记mi=$\overrightarrow{A{B}_{2}}$•$\overrightarrow{A{P}_{i}}$(i=1,2,3,…,10),则m1+m2+…+m10的值为180.

分析 以A为坐标原点,AC1所在直线为x轴建立直角坐标系,可得B2(3,$\sqrt{3}$),B3(5,$\sqrt{3}$),C3(6,0),求出直线B3C3的方程,可设Pi(xi,yi),可得$\sqrt{3}$xi+yi=6$\sqrt{3}$,运用向量的数量积的坐标表示,计算即可得到所求和.

解答 解:以A为坐标原点,AC1所在直线为x轴建立
直角坐标系,
可得B2(3,$\sqrt{3}$),B3(5,$\sqrt{3}$),C3(6,0),
直线B3C3的方程为y=-$\sqrt{3}$(x-6),
可设Pi(xi,yi),可得$\sqrt{3}$xi+yi=6$\sqrt{3}$,
即有mi=$\overrightarrow{A{B}_{2}}$•$\overrightarrow{A{P}_{i}}$=3xi+$\sqrt{3}$yi
=$\sqrt{3}$($\sqrt{3}$xi+yi)=18,
则m1+m2+…+m10=18×10=180.
故答案为:180.

点评 本题考查向量的数量积的坐标表示,注意运用直线方程,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若x>0,y>0,则$\frac{x}{x+2y}+\frac{y}{x}$的最小值为$\sqrt{2}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校为学生定做校服,规定凡身高(精确到1cm)不超过160cm的学生交校服费80元;凡身高超过160cm的学生,身高每超出1cm多交5元钱,若学生应交校服费为η,学生身高用ξ表示,则η和ξ是否为离散型随机变量?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在数2与1之间插入10个数,使这12个数成递减的等差数列,则公差为-$\frac{1}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b∈R,则“b≥0”是“(a+1)2+b≥0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于函数f(x),如果存在函数g(x)=ax+b(a,b为常数),使得对于区间D上的一切实数x都有f(x)≤g(x)成立,则称函数g(x)为函数f(x)在区间D上的一个“覆盖函数”,设f(x)=2x,g(x)=2x,若函数g(x)为函数f(x)在区间[m,n]上的一个“覆盖函数”,则2|m-n|的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数$f(x)={e^{|x|}}-\frac{2}{{{x^2}+3}}$,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.$(\frac{1}{3},1)$B.$(-∞,\frac{1}{3})∪(1,+∞)$C.$(-\frac{1}{3},\frac{1}{3})$D.$(-∞,-\frac{1}{3})∪(\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$sinαcosα=\frac{1}{8}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,则sinα-cosα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足an+1=an+2n且a1=2,则数列{an}的通项公式an=n2-n+2.

查看答案和解析>>

同步练习册答案