精英家教网 > 高中数学 > 题目详情
3.已知$sinαcosα=\frac{1}{8}$,且$\frac{5π}{4}<α<\frac{3π}{2}$,则sinα-cosα=$\frac{\sqrt{3}}{2}$.

分析 由条件利用同角三角函数的基本关系、二倍角公式,求得sinα-cosα的值.

解答 解:∵已知$sinαcosα=\frac{1}{8}$,∴sin2α=$\frac{1}{4}$,又$\frac{5π}{4}<α<\frac{3π}{2}$,∴$\frac{5π}{2}$<2α<3π,
∴sinα-cosα>0,则sinα-cosα=$\sqrt{{(sinα-cosα)}^{2}}$=$\sqrt{1-sin2α}$=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知f(x)=sinx+cosx+sin2x,若?t∈R,x∈R,asint+2a+1≥f(x)恒成立,则实数a的取值范围是(  )
A.(-∞,$\sqrt{2}$]B.[$\sqrt{2}$-1,+∞)C.[-$\sqrt{2}$,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记mi=$\overrightarrow{A{B}_{2}}$•$\overrightarrow{A{P}_{i}}$(i=1,2,3,…,10),则m1+m2+…+m10的值为180.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果P1,P2,…,Pn是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…+xn=10,则|P1F|+|P2F|+…+|PnF|=(  )
A.n+10B.n+20C.2n+10D.2n+20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.1是集合N中最小的数B.x2-4x+4=0的解集为{2,2}
C.{0}不是空集D.高个的人组成的集合是无限集

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}满足a1=3,${a_n}_{+1}=\left\{\begin{array}{l}2{a_n},\;(0≤{a_n}≤1)\\{a_n}-1,\;\;({a_n}>1).\end{array}\right.$那么a2016=2,数列{an}的前n项和Sn=$\left\{\begin{array}{l}{\frac{3(n+1)}{2},}&{n为奇数}\\{\frac{3n+4}{2},}&{n为偶数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知α∈(-$\frac{π}{2},\frac{π}{2}$),sin(π+α)=$\frac{4}{5}$,则tanα=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:x2-7x+10<0,q:x2-4mx+3m2<0,其中m>0.
(1)若m=4,且p∧q为真,求x的取值范围;
(2)若¬q是¬p的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={x∈Z|$\frac{1-x}{x+1}$≥0},集合B={i,i98,|i|,$\frac{1}{i}+i$},其中i为虚数单位,则集合A∩B的真子集的个数是(  )
A.3B.4C.7D.8

查看答案和解析>>

同步练习册答案