分析 由条件利用同角三角函数的基本关系、二倍角公式,求得sinα-cosα的值.
解答 解:∵已知$sinαcosα=\frac{1}{8}$,∴sin2α=$\frac{1}{4}$,又$\frac{5π}{4}<α<\frac{3π}{2}$,∴$\frac{5π}{2}$<2α<3π,
∴sinα-cosα>0,则sinα-cosα=$\sqrt{{(sinα-cosα)}^{2}}$=$\sqrt{1-sin2α}$=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.
点评 本题主要考查同角三角函数的基本关系、二倍角公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\sqrt{2}$] | B. | [$\sqrt{2}$-1,+∞) | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n+10 | B. | n+20 | C. | 2n+10 | D. | 2n+20 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com