| A. | $(\frac{1}{3},1)$ | B. | $(-∞,\frac{1}{3})∪(1,+∞)$ | C. | $(-\frac{1}{3},\frac{1}{3})$ | D. | $(-∞,-\frac{1}{3})∪(\frac{1}{3},+∞)$ |
分析 根据f(x)解析式可以判断f(x)在[0,+∞)上为增函数,在R上为偶函数,从而由f(x)>f(2x-1)便可得到|x|>|2x-1|,两边平方即可解出该不等式,从而得出x的取值范围.
解答 解:x≥0时,f(x)=ex-$\frac{2}{{x}^{2}+3}$,
∴x增大时ex增大,x2增大,即f(x)增大;
∴f(x)在[0,+∞)上单调递增;
f(x)的定义域为R,且f(-x)=f(x);
∴f(x)为偶函数;
∴由f(x)>f(2x-1)得:f(|x|)>f(|2x-1|)
∴|x|>|2x-1|;
∴x2>(2x-1)2;
解得:$\frac{1}{3}$<x<1;
∴x的取值范围为($\frac{1}{3}$,1).
故选:A.
点评 考查指数函数、二次函数的单调性,增函数的定义,偶函数的定义,以及通过两边平方解绝对值不等式的方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n+10 | B. | n+20 | C. | 2n+10 | D. | 2n+20 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | 4 | C. | 6 | D. | 12 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com