精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-lnx,x∈(0,e],其中e为自然常数,
(Ⅰ)当a=1时,求f(x)的单调区间和极值;
(Ⅱ)是否存在实数a,使得f(x)的最小值是3,若存在,求出a的值;若不存在,说明理由。
解:(Ⅰ)a=1,f(x)=x-lnx,x∈(0,e],
令f′(x)=0, 即:,解得x=1;
令f′(x)>0, 即:,解得1<x≤e;
令f′(x)<0, 即:,解得0<x<1;
∴f(x)的单调增区间为(1,e],单调减区间为(0,1),
f(x)在x=1处取得极小值为f(1)=1;
(Ⅱ)
(1)若
∵x∈(0,e],
∴f′(x)<0,
∴f(x)在(0,e]上是减函数,
此时(舍);
(2)若a>0,令f′(x)=0,即:
令f′(x)>0,即:
令f′(x)<0,即:
①若,此时f(x)在(0,e]上是减函数,
(舍);
②若,此时f(x)在(0,e]上左减右增,

综上可知:存在,使得f(x)的最小值是3。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案