精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=AC,D是△ABC外接圆AC上的一点,AE⊥BD于E,求证BE=CD+DE.
考点:圆內接多边形的性质与判定
专题:选作题,立体几何
分析:延长BD到F使AF=AC,连结AF、CF、CD,证明DF=CD,AB=AF,即可证明结论.
解答: 证明:延长BD到F使AF=AC.
连结AF、CF、CD,则有∠AFB=∠ABF,∠AFC=∠ACF.
∵D在△ABC的外接圆上,
∴∠ACD=∠ABD,
从而∠AFD=∠ACD,
∴∠DCF=∠DFC,∴DF=CD.
∵AE⊥BF,AB=AF,
∴BE=EF=ED+DF=ED+CD.
点评:本题考查圆內接多边形的性质与判定,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,某几何体的直观图、侧视图与俯视图如图所示,正视图为矩形,F为CE上的点,且BF⊥平面ACE,AC交BD于点G.
(1)求证:AE∥平面BFD;
(2)求三棱锥C-BGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式:
(1)2x>8;
(2)(
1
2
x
2

(3)0.32-x>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了开阔学生的知识视野,某学校举办了一次数学知识竞赛活动,共有800名学生参加,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据频率分布表,解答下列问题:
(Ⅰ)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
序号(i)分组(分数)组中值(Gi频数(人数)频率(Fi
1[60,70)650.12
2[70,80)7520
3[80,90)85120.24
4[90,100)95
合计501
(Ⅱ)规定成绩不低于90分的同学能获奖,请估计在参加的800名学生中大概有多少同学获奖?
(Ⅲ)在上述统计数据的分析中有一项计算见算法流程图,求输出S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A′B′C′D′中,′E为DD′的中点,BD′为正方体的对角线,
(1)求证:BD′∥平面ACE;
(2)设正方体的棱长为a,沿着平面ACE将正方体截去一个棱锥D-ACE,求剩下的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=5,|
b
|=4,
a
b
的夹角为60°,试问:当k为何值时,
(1)向量k
a
-
b
a
+2
b
垂直?
(2)向量k
a
-
b
a
+2
b
平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P是抛物线y2=4x上的一点,A(2,2)是平面内的一定点,F是抛物线的焦点,当P点坐标是
 
时,PA+PF最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

用定义证明:已知函数f(x)=x+
1
x

(1)证明函数f(x)=x+
1
x
在区间[1,+∞)上是增函数,
(2)求函数f(x)=x+
1
x
在区间[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+
π
4
)=2
2
,曲线C2的参数方程为
x=cosθ
y=sinθ
(θ为参数0≤θ≤π).
(Ⅰ)求C2的普通方程,它表示什么曲线?
(Ⅱ)求C上的点到C1的最小距离.

查看答案和解析>>

同步练习册答案