精英家教网 > 高中数学 > 题目详情
如图所示,某几何体的直观图、侧视图与俯视图如图所示,正视图为矩形,F为CE上的点,且BF⊥平面ACE,AC交BD于点G.
(1)求证:AE∥平面BFD;
(2)求三棱锥C-BGF的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)由线面垂直得CE⊥BF,由G、F分别是AC、BC中点,FG∥AE,由此能证明AE∥平面BFD.
(2)由VC-BGF=VG-BCF,利用等积法能求出三棱锥C-BGF的体积.
解答: (1)证明:∵ABCD是矩形,∴G是AC中点,
∵BF⊥平面ACE,∴CE⊥BF,
由三视图知BC=BE=2,∴F是BC中点,
连结FG,得FG∥AE,
∴AE∥平面BFD.
(2)解:由(1)得FG∥AE,
由三视图知AE⊥面BCE,
∴FG⊥面BCE,
在Rt△BCE中,BF=
1
2
CE=CF=
2

∴S△CFB=
1
2
×
2
×
2
=1

又FG=
1
2
AE
=1,
∴VC-BGF=VG-BCF=
1
3
S△CFB•FG
=
1
3
×1×1=
1
3
点评:本题考查直线与平面平行的证明,考查三棱锥体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2+1,则f(2)=(  )
A、3B、5C、7D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b,c表示直线,M表示平面,给出下列四个命题:
①若a∥M,b∥M,则a∥b;
②若b?M,a∥b,则a∥M;
③若a⊥c,b⊥c,则a∥b;
④若a⊥M,b⊥M,则a∥b.
其中正确命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A′B′C′D′中,求证:平面AB′D′∥平面C′BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=4,an>0,前n项和为Sn,若an=
Sn
+
Sn-1
,(n∈N*,n≥2).
(l)求数列{an}的通项公式;
(2)若数列{
1
anan+1
}前n项和为Tn,求证
1
20
≤Tn
3
20

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点. 
(1)求证:EF∥平面PAD; 
(2)求证:EF⊥CD;
(3)若∠PDA=45°,求证:EF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

过圆x2+y2=1上一点P作圆的切线与x轴和y轴分别交于A,B两点,O是坐标原点,则|
OA
+2
OB
|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=AC,D是△ABC外接圆AC上的一点,AE⊥BD于E,求证BE=CD+DE.

查看答案和解析>>

同步练习册答案