精英家教网 > 高中数学 > 题目详情
过圆x2+y2=1上一点P作圆的切线与x轴和y轴分别交于A,B两点,O是坐标原点,则|
OA
+2
OB
|的最小值是
 
考点:平面向量数量积的坐标表示、模、夹角,圆的切线方程
专题:综合题,直线与圆
分析:设∠OBP=α,由O<α<
π
2
,∠OBP=
π
2
-α,知|
OA
+2
OB
|=|(
1
cosα
2
sinα
)然后利用向量的模以及基本不等式求出表达式的最小值即可.
解答: 解:设∠OAP=α,
∵O<α<
π
2
,∠OBP=
π
2
-α,
OA
=(
1
cosα
,0),2
OB
=(0,
2
sinα

∴|
OA
+2
OB
|=|(
1
cosα
2
sinα
)|=
1
cos2α
+
4
sin2α
=
tan2α+
4
tan2α
+5
9
=3,
当且仅当tan2α=
4
tan2α
时,表达式取得最小值3.
故答案为:3.
点评:本题考查直线和圆的方程的应用,是基础题.解题时要认真审题,仔细解答,注意合理地运用均值不等式进行解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,a1∈(0,1),a2∈(1,2),a3∈(2,3),则a4的取值范围是(  )
A、(3,4)
B、(2
2
,4)
C、(3,9)
D、(2
2
,9)

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在(0,+∞)上的函数f(x)满足:
①对于任意实数a,b都有f(ab)=f(a)+f(b)-p,其中p是正实常数;
②f(2)=p-1;
③当x>1时,总有f(x)<p.
(1)求f(1)与f(
1
2
)的值(用p表示);
(2)设an=f(2n)n∈N+,数列{an}的前n项和为Sn,当且仅当n=5时,Sn取得最大值,求p的取值范围; 
(3)设m=et,n=t+1(t>0),判断f(m)与f(n)的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某几何体的直观图、侧视图与俯视图如图所示,正视图为矩形,F为CE上的点,且BF⊥平面ACE,AC交BD于点G.
(1)求证:AE∥平面BFD;
(2)求三棱锥C-BGF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<
π
2
,x∈R)图象的一部分如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[-8,8]时,求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱锥P-ABC,底面边长为6,侧棱长为5,求它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式:
(1)2x>8;
(2)(
1
2
x
2

(3)0.32-x>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若P是抛物线y2=4x上的一点,A(2,2)是平面内的一定点,F是抛物线的焦点,当P点坐标是
 
时,PA+PF最小.

查看答案和解析>>

同步练习册答案