精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=2$\sqrt{3}sin(x+\frac{π}{4})cos(x+\frac{π}{4})+2{cos^2}(x-\frac{π}{4})-1$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设a,b,c是△ABC中角A,B,C所对的边,已知f(A)=$\sqrt{3}$,2acosB=c,且△ABC的面积为$\sqrt{3}$,求边a的长.

分析 (Ⅰ)由三角函数恒等变换的应用化简函数解析式可得f(x)=2sin(2x+$\frac{π}{3}$),由周期公式即可得解;
(Ⅱ)由f(A)=2sin(2A+$\frac{π}{3}$)=$\sqrt{3}$,结合范围0<A<π,解得A,由2acosB=c,利用正弦定理可得sin(A-B)=0,可得A=B=$\frac{π}{6}$,由2acosB=c,可得c=$\sqrt{3}a$①,由S△ABC=$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{1}{4}$ac,可得ac=4$\sqrt{3}$②,①②联立即可解得a的值.

解答 解:(Ⅰ)∵f(x)=2$\sqrt{3}sin(x+\frac{π}{4})cos(x+\frac{π}{4})+2{cos^2}(x-\frac{π}{4})-1$
=$\sqrt{3}$sin(2x+$\frac{π}{2}$)+1+cos(2x-$\frac{π}{2}$)-1
=$\sqrt{3}$cos2x+sin2x
=2sin(2x+$\frac{π}{3}$)
∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(Ⅱ)∵f(A)=2sin(2A+$\frac{π}{3}$)=$\sqrt{3}$,即sin(2A+$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
∵0<A<π,即$\frac{π}{3}$<2A+$\frac{π}{3}$<$\frac{7π}{3}$,
∴2A+$\frac{π}{3}$=$\frac{2π}{3}$,解得:A=$\frac{π}{6}$,
∵2acosB=c,由正弦定理可得:2sinAcosB=cosB=sinC=sin(A+B),
展开化简,得sinAcosB+cosAsinB=2sinAcosB,
∴sin(A-B)=0,
∴由A,B为三角形内角,可得A=B=$\frac{π}{6}$,
∴由2acosB=c,可得c=$\sqrt{3}a$①,
∵S△ABC=$\sqrt{3}$=$\frac{1}{2}$acsinB=$\frac{1}{4}$ac,可得ac=4$\sqrt{3}$②,
∴由①②可得:a=2.

点评 本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在数列{an}中a1=1,n≥2时Sn2-anSn+2an=0.
(1)求{an}通项公式;
(2)bn=2n-1记{$\frac{1}{{S}_{n}{b}_{n}}$}前n项和为Tn.求证:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数y=sin(2x-$\frac{π}{3}$)的图象向右平移$\frac{7π}{12}$个单位,再将图象上每个点的横坐标扩大到原来的2倍,纵坐标不变,得到的图象对应的函数表达式是(  )
A.y=sin(x+$\frac{5}{6}$π)B.y=cosxC.y=sin(4x+$\frac{5}{6}$π)D.y=cos4x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“对任意的x∈R,x2≥0”的否定是(  )
A.对任意的x∈R,x2<0B.不存在x∈R,x2<0
C.存在x∈R,x2<0D.存在x∈R,x2≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将函数$f(x)=3cos(x+\frac{2π}{3})$的图象向左平移$\frac{π}{3}$后,得到函数y=g(x)的图象,则f(x)的最大值为3,g(x)在区间$[{-\frac{π}{2},\frac{π}{2}}]$上的单调递增区间为[0,$\frac{π}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为(  )
A.y=cos2x,x∈RB.y=x3+1,x∈R
C.y=$\frac{{e}^{x}-{e}^{-x}}{2}$,x∈RD.y=log2|x|,x∈R且x≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y2=2px(p>0)上一点P(3,t)到其焦点的距离为4.
(1)求p的值;
(2)过点Q(1,0)作两条直线l1,l2与抛物线分别交于点A、B和C、D,点M,N分别是线段AB和CD的中点,设直线l1,l2的斜率分别为k1,k2,若k1+k2=3,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设两向量$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$满足|$\overrightarrow{{e}_{1}}$|=2,|$\overrightarrow{{e}_{2}}$|=1,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$的夹角为60°,
(1)若向量2t$\overrightarrow{{e}_{1}}$+7$\overrightarrow{{e}_{2}}$与向量$\overrightarrow{{e}_{1}}$+t$\overrightarrow{{e}_{2}}$垂直,求实数t的值;
(2)若向量2t$\overrightarrow{{e}_{1}}$+7$\overrightarrow{{e}_{2}}$与向量$\overrightarrow{{e}_{1}}$+t$\overrightarrow{{e}_{2}}$平行,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知正实数x,y满足xy=3,则2x+y的最小值是2$\sqrt{6}$.

查看答案和解析>>

同步练习册答案