精英家教网 > 高中数学 > 题目详情
6.已知数列{an}是各项均为正数的等比数列,且满足$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$,$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$,则a1a4=8.

分析 化简$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$得a1a2的值,同理$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$得a3a4的值,再根据等比数列的性质求出a1a4的值.

解答 解:∵数列{an}是各项均为正数的等比数列,
且$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{2}$=$\frac{2}{{a}_{1}}$+$\frac{2}{{a}_{2}}$,
∴$\frac{{a}_{1}{+a}_{2}}{2}$=$\frac{2{(a}_{1}{+a}_{2})}{{{a}_{1}a}_{2}}$,
∴a1a2=2×2=4;
同理$\frac{{a}_{3}}{4}$+$\frac{{a}_{4}}{4}$=$\frac{4}{{a}_{3}}$+$\frac{4}{{a}_{4}}$,
得a3a4=4×4=16;
∴a1a2a3a4=4×16=64,
∴a1a4=a2a3=8.
故答案为:8.

点评 本题考查了等比数列的项的性质与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某种产品的广告费支出x与销售额 y(单位:百万元)之间有如表对应数据:
x24568
y3040506070
(Ⅰ)请画出上表数据的散点图.
(Ⅱ)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+x,并估计广告支出1千万元时的销售额
(参考数值:2×30+4×40+5×50+6×60+8×70═1390)
参考公式.
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{\;}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知x,y的取值如表所示,若y与x线性相关,且$\widehaty$=0.5x+a,则a=(  )
x0134
y3.25.35.87.7
A.3.5B.2.2C.4.5D.3.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某中学从4名男生和3名女生中推荐3人参加社会公益活动,若选出的3人中既有男生又有女生,则不同的选法共有(  )
A.90种B.60种C.35种D.30种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知项数相同的等比数列{an}和{bn},公比为q1,q2(q1,q2≠1),则下列数列①{3an};②{$\frac{2}{{a}_{n}}$};③{3${\;}^{{a}_{n}}$};④{2an-3bn};⑤{2an•3bn}中为等比数列的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点.将△EDA沿AD折到△PDA位置(如图2),连结PC,PB构成一个四棱锥P-ABCD.

(Ⅰ)求证AD⊥PB;
(Ⅱ)若PA⊥平面ABCD,求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-$\frac{6}{\sqrt{1+8si{n}^{2}θ}}$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}α}\\{y=-3-α}\end{array}\right.$(α为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若点(1,a)到直线y=x+1的距离是$\frac{{3\sqrt{2}}}{2}$,则实数a为(  )
A.-1B.5C.-1或5D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若(1-mx)5=a0+a1x+a2x2+…+a5x5,且a5=-32,则a1+a2+a3+a4的值为30.

查看答案和解析>>

同步练习册答案