22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点
到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆
交于A、C、D、B四点,试证明
为定值;
|
解: (Ⅰ)设抛物线方程为
,由题意得:
,
, 所以抛物线C的方程为
…4分![]()
(Ⅱ) 解法一:抛物线焦点与
的圆心重合即为E(0,1),
设过抛物线焦点的直线方程为
,
,
,
,得到
,………………………….2分
由抛物线的定义可知
,
,![]()
.即
为定值1………..3分
(Ⅲ)
,所以
,
所以切线AM的方程为
,切线BM的方程为
,
解得
即
………………………………………………………….2分
所以点M到直线AB的距离为
.
设![]()
…………………………………..………….2分
令
,所以
,
,
所以
在
上是增函数,当
,即
时,
,即
与
面积之和的最小值为2………………………………………………………………………………2分
(Ⅱ)解法二:设过抛物线焦点的直线方程为
,
,不妨设
.
,
,得到
,………………………….2分
,
,![]()
,即
为定值……………..………..3分
(Ⅲ)
,所以
,所以切线AM的方程为
,
切线BM的方程为
,解得
即
……….2分
所以点M到直线AB的距离为
.
设![]()
……………………………….2分
令
,所以
,
,
所以
在
上是增函数,当
,即
时,
,即
与
面积之和的最小值为2………………………………………………………………………………2分
解析
科目:高中数学 来源: 题型:解答题
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
?若存在,求出m的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
.(本题满分14分)已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点
在直线
上。
(1)求椭圆的标准方程
(2)求以线段OM为直径且被直线
截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
椭圆
的离心率
,过右焦点![]()
的直线
与椭圆
相交
于A、B两点,当直线
的斜率为1时,坐标原点
到直线
的距离为![]()
⑴求椭圆C的方程;
⑵椭圆C上是否存在点
,使得当直线
绕点
转到某一位置时,有
成
立?若存在,求出所有满足条件的点
的坐标及对应的直线方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x
1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的准线为
,焦点为
,圆
的圆心在
轴的正半轴上,且与
轴相切,过原点
作倾斜角为
的直线
,交![]()
于点
,交圆
于另一点
,且![]()
(1)求圆
和抛物线C的方程;
(2)若
为抛物线C上的动点,求
的最小值;
(3)过
上的动点Q向圆
作切线,切点为S,T,
求证:直线ST
恒过一个定点,并求该定点的坐标.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)已知椭圆C:
=1(a>b>0)的离心率为
,短轴一
个端点到右焦点的距离为3.
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:
的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com