精英家教网 > 高中数学 > 题目详情
7.如图,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.
(Ⅰ)求AB的长;
(Ⅱ)求sinC.

分析 (Ⅰ)根据tanθ=$\frac{BD}{AB}$,tan2θ=$\frac{BE}{AB}$,利用正切函数的二倍角公式,即可求得tanθ,即可求得AB的长;
(Ⅱ)sinC=sin($\frac{π}{2}$-∠BAC)cos∠BAC=cos(θ+2θ),利用二倍角公式即可求得sinC..

解答 解:(Ⅰ)设∠BAD=θ<90°,在Rt△ABD中,tanθ=$\frac{BD}{AB}$,AB=$\frac{BD}{tanθ}$,
在Rt△ABE中,tan2θ=$\frac{BE}{AB}$,AB=$\frac{BE}{tan2θ}$,
∴$\frac{BD}{tanθ}$=$\frac{BE}{tan2θ}$,则5tanθ=2tan2θ,
即5tanθ=$\frac{2×2tanθ}{1-ta{n}^{2}θ}$,即5tan2θ=1,解得$tanθ=\frac{{\sqrt{5}}}{5}$(负值舍去),
因此$AB=\frac{2}{tanθ}=2\sqrt{5}$.
(Ⅱ)由题意知0°<θ<2θ<3θ<90°.
因为$tanθ=\frac{{\sqrt{5}}}{5}$,则$sinθ=\frac{{\sqrt{6}}}{6}$,$cosθ=\frac{{\sqrt{30}}}{6}$,
则sin2θ=2sinθcosθ=$\frac{\sqrt{5}}{3}$,cos2θ=cos2θ-cos2θ=$\frac{2}{3}$,即$sin2θ=\frac{{\sqrt{5}}}{3}$,$cos2θ=\frac{2}{3}$.
sinC=sin($\frac{π}{2}$-∠BAC)cos∠BAC=cos(θ+2θ)=cosθcos2θ-sinθsin2θ,=$\frac{\sqrt{30}}{6}$×$\frac{2}{3}$-$\frac{\sqrt{6}}{6}$×$\frac{\sqrt{5}}{3}$=$\frac{\sqrt{30}}{18}$
∴sinC=$\frac{\sqrt{30}}{18}$.

点评 本题考查同角三角函数的基本关系,诱导公式,二倍角公式,两角和的余弦公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在△ABC中,∠C=$\frac{π}{4}$,O为外心,且有$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则m+n的取值范围是[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的三个内角∠A,∠B,∠C所对的边分别为a,b,c,且a=3,b=2,c=4,则cosC=-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设不等式组$\left\{\begin{array}{l}x+y≥0\\ x≤2\\ y≤0\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是1-$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设k1,k2分别是两条直线l1,l2的斜率,则“l1∥l2”是“k1=k2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,其定义域和值域与函数y=elnx的定义域和值域相同的是(  )
A.y=xB.y=lnxC.y=$\frac{1}{\sqrt{x}}$D.y=10x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$tan({α+\frac{π}{4}})=\frac{3}{4}$,则${cos^2}({\frac{π}{4}-α})$=(  )
A.$\frac{7}{25}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,D、E分别是△ABC的三等分点,设$\overrightarrow{AD}$=$\overrightarrow{m}$,$\overrightarrow{AE}$=$\overrightarrow{n}$,∠BAC=$\frac{π}{3}$.
(1)用$\overrightarrow{m}$,$\overrightarrow{n}$分别表示$\overrightarrow{AB}$,$\overrightarrow{AC}$;
(2)若$\overrightarrow{AD}$•$\overrightarrow{AE}$=15,|$\overrightarrow{BC}$|=3$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,3a5-a3a7=0,若数列{bn}为等差数列,且b5=a5,则{bn}的前9项的和S9为(  )
A.24B.25C.27D.28

查看答案和解析>>

同步练习册答案