分析 利用已知条件,得∠AOB=$\frac{π}{2}$,两边平方$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则m2+n2=1结合基本不等式,即可求得结论.
解答 解:设圆的半径为1,则由题意m、n不能同时为正,
∴m+n<1…①
∵∠C=$\frac{π}{4}$,O是△ABC的外心,
∴∠AOB=$\frac{π}{2}$
两边平方$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,即可得出1=m2+n2+2mncos∠AOB⇒m2+n2=1…②,
∵$\frac{{m}^{2}+{n}^{2}}{2}$≥($\frac{m+n}{2}$),…③,
由①②③得-$\sqrt{2}$≤m+n≤1
故答案为:[-$\sqrt{2}$,1)
点评 本题考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{π}$ | B. | $\frac{{6\sqrt{3}}}{π}$ | C. | $\frac{4}{3}$ | D. | $\frac{{4\sqrt{3}}}{π}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com