精英家教网 > 高中数学 > 题目详情
5.已知$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为150°,|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,则$\frac{λ}{μ}$的值为$\frac{5}{9}$.

分析 先根据向量的数量积公式求出$\overrightarrow{AB}$•$\overrightarrow{AC}$,再根据向量$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,得到(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=0,代值化简整理即可得到答案.

解答 解:∵|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,
∴|$\overrightarrow{AC}$|=1,
∵$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为150°,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|•cos150°=$\sqrt{3}$×1×(-$\frac{\sqrt{3}}{2}$)=-$\frac{3}{2}$
$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AP}$•$\overrightarrow{BC}$=(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=(λ-μ)$\overrightarrow{AB}$•$\overrightarrow{AC}$-λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{AC}}^{2}$=-$\frac{3}{2}$(λ-μ)-3λ+μ=-$\frac{9}{2}$λ+$\frac{5}{2}$μ=0,
∴$\frac{λ}{μ}$=$\frac{5}{9}$,
故答案为:$\frac{5}{9}$

点评 本题考查两数比值的求法,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则sin C的值为(  )
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}}}{8}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|+|x+5|.
(1)若a=-1,解不等式:f(x)≥2|x+5|;
(2)若f(x)≥6恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2.考察每行中五个数之和,记这五个和的最小值为m,则m的最大值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足2an+1-an=0,若a2=$\frac{1}{2}$,则数列{an}的前11项和为(  )
A.256B.$\frac{1023}{4}$C.$\frac{2047}{1024}$D.$\frac{4095}{2048}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x的不等式ax3+x2+x≤lnx+$\frac{2}{x}$在(0,+∞)上恒成立,则实数a的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,∠C=$\frac{π}{4}$,O为外心,且有$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则m+n的取值范围是[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|3x+2|.
(1)解不等式f(x)<6-|x-2|;
(2)已知m+n=4(m,n>0),若|x-a|-f(x)≤$\frac{1}{m}$+$\frac{1}{n}$(a>0)恒成立,求函数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设不等式组$\left\{\begin{array}{l}x+y≥0\\ x≤2\\ y≤0\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是1-$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案