分析 (1)分类讨论,即可解不等式f(x)<6-|x-2|;
(2)$\frac{1}{m}+\frac{1}{n}=\frac{1}{4}(\frac{1}{m}+\frac{1}{n})(m+n)$=$\frac{1}{4}(1+1+\frac{n}{m}+\frac{m}{n})≥1$.令g(x)=|x-a|-f(x),要使不等式恒成立,只需$g{(x)_{max}}=\frac{2}{3}+a≤1$,即可求函数a的取值范围.
解答 解:(1)不等式f(x)<6-|x-2|,即|3x+2|+|x-2|<6.
当$x<-\frac{2}{3}$时,即-3x-2-x+2<6,得$-\frac{3}{2}<x<-\frac{2}{3}$;
当$-\frac{2}{3}≤x≤2$时,即3x+2-x+2<6,得$-\frac{3}{2}≤x<1$;
当x>2时,即3x+2+x-2<6,无解.
综上,原不等式的解集为$(-\frac{3}{2},1)$.
(2)$\frac{1}{m}+\frac{1}{n}=\frac{1}{4}(\frac{1}{m}+\frac{1}{n})(m+n)$=$\frac{1}{4}(1+1+\frac{n}{m}+\frac{m}{n})≥1$.
令g(x)=|x-a|-f(x)=|x-a|-|3x+2|=$\left\{{\begin{array}{l}{2x+2+a,x<-\frac{2}{3}}\\{-4x-2+a,-\frac{2}{3}≤x≤a}\\{-2x-2-a,x>a}\end{array}}\right.$
∴当$x=-\frac{2}{3}$时,$g{(x)_{max}}=\frac{2}{3}+a$.
∴要使不等式恒成立,只需$g{(x)_{max}}=\frac{2}{3}+a≤1$,即$0<a≤\frac{1}{3}$,
故所求实数a的取值范围是$(0,\frac{1}{3}]$.
点评 本题考查不等式的解法,考查分类讨论的数学思想,考查恒成立问题,正确转化是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{π}$ | B. | $\frac{{6\sqrt{3}}}{π}$ | C. | $\frac{4}{3}$ | D. | $\frac{{4\sqrt{3}}}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com