精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|3x+2|.
(1)解不等式f(x)<6-|x-2|;
(2)已知m+n=4(m,n>0),若|x-a|-f(x)≤$\frac{1}{m}$+$\frac{1}{n}$(a>0)恒成立,求函数a的取值范围.

分析 (1)分类讨论,即可解不等式f(x)<6-|x-2|;
(2)$\frac{1}{m}+\frac{1}{n}=\frac{1}{4}(\frac{1}{m}+\frac{1}{n})(m+n)$=$\frac{1}{4}(1+1+\frac{n}{m}+\frac{m}{n})≥1$.令g(x)=|x-a|-f(x),要使不等式恒成立,只需$g{(x)_{max}}=\frac{2}{3}+a≤1$,即可求函数a的取值范围.

解答 解:(1)不等式f(x)<6-|x-2|,即|3x+2|+|x-2|<6.
当$x<-\frac{2}{3}$时,即-3x-2-x+2<6,得$-\frac{3}{2}<x<-\frac{2}{3}$;
当$-\frac{2}{3}≤x≤2$时,即3x+2-x+2<6,得$-\frac{3}{2}≤x<1$;
当x>2时,即3x+2+x-2<6,无解.
综上,原不等式的解集为$(-\frac{3}{2},1)$.
(2)$\frac{1}{m}+\frac{1}{n}=\frac{1}{4}(\frac{1}{m}+\frac{1}{n})(m+n)$=$\frac{1}{4}(1+1+\frac{n}{m}+\frac{m}{n})≥1$.
令g(x)=|x-a|-f(x)=|x-a|-|3x+2|=$\left\{{\begin{array}{l}{2x+2+a,x<-\frac{2}{3}}\\{-4x-2+a,-\frac{2}{3}≤x≤a}\\{-2x-2-a,x>a}\end{array}}\right.$
∴当$x=-\frac{2}{3}$时,$g{(x)_{max}}=\frac{2}{3}+a$.
∴要使不等式恒成立,只需$g{(x)_{max}}=\frac{2}{3}+a≤1$,即$0<a≤\frac{1}{3}$,
故所求实数a的取值范围是$(0,\frac{1}{3}]$.

点评 本题考查不等式的解法,考查分类讨论的数学思想,考查恒成立问题,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知定义域为[0,e]的函数f(x)同时满足:
①对于任意的x∈[0,e],总有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,则恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)证明:不等式f(x)≤e对任意x∈[0,e]恒成立;
(3)若对于任意x∈[0,e],总有4f2(x)-4(2e-a)f(x)+4e2-4ea+1≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为150°,|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,则$\frac{λ}{μ}$的值为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若变量x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ y≤2\\ x-y≤2\end{array}\right.$,则z=2x-y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若一个正四面体的表面积为S1,其内切球的表面积为S2,则$\frac{S_1}{S_2}$=(  )
A.$\frac{6}{π}$B.$\frac{{6\sqrt{3}}}{π}$C.$\frac{4}{3}$D.$\frac{{4\sqrt{3}}}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1=6,E,F分别为BB1,AC的中点.
(1)求证:平面A1EC⊥平面ACC1A1
(2)求几何体AA1EBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知2个小孩和3个大人排队,其中2个小孩不能相邻,则不同的排法种数有72种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知双曲线$\frac{{x}^{2}}{5}$-y2=1的焦点是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的顶点,且椭圆与双曲线的离心率互为倒数.
(I)求椭圆C的方程;
(Ⅱ)设动点M在椭圆C上,且|MN|=$\frac{4\sqrt{3}}{3}$,记直线MN在y轴上的截距为m,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐进线分别相交于第一、二象限,且被双曲线的两条渐进线截得的线段长为$\sqrt{3}a$,则该双曲线的离心率为2.

查看答案和解析>>

同步练习册答案