精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=|x-a|+|x+5|.
(1)若a=-1,解不等式:f(x)≥2|x+5|;
(2)若f(x)≥6恒成立,求a的取值范围.

分析 (1)若a=1,不等式:f(x)≥2|x+5|⇒|x+1|≥|x+5|,等价于(x+1)与(x+5)的和与差同号,转化为一元一次不等式得答案;
(2)利用绝对值的不等式放缩,把f(x)≥6恒成立转化为|a+5|≥6,求解绝对值的不等式得答案.

解答 解:(1)当a=-1时,f(x)≥2|x+5|⇒|x+1|≥|x+5|
?(2x+6)(x+1-x-5)≥0,解得:x≤-3,
∴原不等式解集为{x|x≤-3};
(2)f(x)=|x-a|+|x+5|≥|x-a-(x+5)|=|a+5|,
若f(x)≥6恒成立,
只需:|a+5|≥6,解得:a≥1或a≤-11.

点评 本题考查含有绝对值的不等式的解法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知a=2,b=2$\sqrt{3}$,B=120°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,xf′(x)+f(x)>0,且f(1)=0,则不等式f(x)>0的解集为(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定义域为[0,e]的函数f(x)同时满足:
①对于任意的x∈[0,e],总有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,则恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)证明:不等式f(x)≤e对任意x∈[0,e]恒成立;
(3)若对于任意x∈[0,e],总有4f2(x)-4(2e-a)f(x)+4e2-4ea+1≥0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.观察(1)sin220°+cos250°+sin20°cos50°=$\frac{3}{4}$;(2)sin28°+cos238°+sin8°cos38°=$\frac{3}{4}$,两式的结构特点可提出一个猜想的等式为sin2α+cos2(α+30°)+sinαcos(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列{an}中,若a3,a7是方程x2-4x+3=0的两根,则a5=(  )
A.±$\sqrt{3}$B.-$\sqrt{3}$C.$\sqrt{3}$D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题P:方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m+8}$=1表示焦点在x轴上的椭圆,命题Q:曲线y=x2+(2m-3)x+$\frac{1}{4}$与x轴交于不同的两点,如果“P∨Q”为真命题且“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为150°,|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,则$\frac{λ}{μ}$的值为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知2个小孩和3个大人排队,其中2个小孩不能相邻,则不同的排法种数有72种.

查看答案和解析>>

同步练习册答案