精英家教网 > 高中数学 > 题目详情
16.已知命题P:方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m+8}$=1表示焦点在x轴上的椭圆,命题Q:曲线y=x2+(2m-3)x+$\frac{1}{4}$与x轴交于不同的两点,如果“P∨Q”为真命题且“P∧Q”为假命题,求实数m的取值范围.

分析 若P为真,解得m范围,若Q为真,则△≥0,解得m范围,由“p∨q”为真命题,“p∧q”为假命题,可得p,q一真一假.解出即可.

解答 解:若P为真,则:$\left\{\begin{array}{l}{{m}^{2}>2m+8}\\{2m+8>0}\end{array}\right.$,
解得:-4<m<-2或m>4;
由曲线y=x2+(2m-3)x+$\frac{1}{4}$与x轴交于不同的两点,
则△=(2m-3)2-1>0,解得:m>2或m<1,
若Q为真,则m>2或m<1,
∵“P∨Q”为真命题,“P∧Q”为假命题,
∴P,Q一真一假,
P真Q假时,$\left\{\begin{array}{l}{-4<m<-2或m>4}\\{1≤m≤2}\end{array}\right.$,无解;
P假Q真时,$\left\{\begin{array}{l}{m≤-4或-2≤m≤4}\\{m>2或m<1}\end{array}\right.$,
解得:m≤-4或-2≤m<1惑2<m≤4.

点评 本题考查了一元二次不等式的解集与判别式的关系、椭圆的标准的方程、简易逻辑的判定,考查了推理能力与计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在△ABC 中,∠A=60°,a=$\sqrt{13}$,b=4,则满足条件的△ABC  (  )
A.有两个B.有一个C.不存在D.有无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow{b}$=(3,-4tanα),α∈(0,$\frac{π}{2}$),$\overrightarrow{a}$⊥$\overrightarrow{b}$.
(1)求|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)求cos($\frac{3π}{2}$+α)-sin(α-π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x-a|+|x+5|.
(1)若a=-1,解不等式:f(x)≥2|x+5|;
(2)若f(x)≥6恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$是向量,在下列命题中,正确的是⑤.
①若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;  
②|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|
③($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$);
④$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$;      
⑤|$\overrightarrow{a}$+$\overrightarrow{b}$|2=($\overrightarrow{a}$+$\overrightarrow{b}$)2;      
⑥若$\overrightarrow{a}$⊥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$,则$\overrightarrow{a}$⊥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将五个1,五个2,五个3,五个4,五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一行中任何两数之差的绝对值不超过2.考察每行中五个数之和,记这五个和的最小值为m,则m的最大值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足2an+1-an=0,若a2=$\frac{1}{2}$,则数列{an}的前11项和为(  )
A.256B.$\frac{1023}{4}$C.$\frac{2047}{1024}$D.$\frac{4095}{2048}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,∠C=$\frac{π}{4}$,O为外心,且有$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则m+n的取值范围是[-$\sqrt{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的三个内角∠A,∠B,∠C所对的边分别为a,b,c,且a=3,b=2,c=4,则cosC=-$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案