精英家教网 > 高中数学 > 题目详情
19.已知$tan({α+\frac{π}{4}})=\frac{3}{4}$,则${cos^2}({\frac{π}{4}-α})$=(  )
A.$\frac{7}{25}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$

分析 利用同角三角函数的基本关系、诱导公式,求得要求式子的值.

解答 解:∵$tan({α+\frac{π}{4}})=\frac{3}{4}$,
∴${cos^2}({\frac{π}{4}-α})$=${sin}^{2}(α+\frac{π}{4})$=$\frac{{sin}^{2}(α+\frac{π}{4})}{{sin}^{2}(α+\frac{π}{4}){+cos}^{2}(α+\frac{π}{4})}$=$\frac{1}{1+\frac{{cos}^{2}(α+\frac{π}{4})}{{sin}^{2}(α+\frac{π}{4})}}$=$\frac{1}{1+\frac{1}{{tan}^{2}(α+\frac{π}{4})}}$=$\frac{1}{1+\frac{16}{9}}$=$\frac{9}{25}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若一个正四面体的表面积为S1,其内切球的表面积为S2,则$\frac{S_1}{S_2}$=(  )
A.$\frac{6}{π}$B.$\frac{{6\sqrt{3}}}{π}$C.$\frac{4}{3}$D.$\frac{{4\sqrt{3}}}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}满足a1=$\frac{1}{4}$,an+1=an2+an(n∈N*),则$\sum_{n=1}^{2016}$$\frac{1}{{a}_{n}+1}$的整数部分是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.
(Ⅰ)求AB的长;
(Ⅱ)求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知方程|ln|x-2||=m(x-2)2,有且仅有四个解x1,x2,x3,x4,则m(x1+x2+x3+x4)=$\frac{4}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点向圆x2+y2=a2作一条切线,若该切线与双曲线的两条渐进线分别相交于第一、二象限,且被双曲线的两条渐进线截得的线段长为$\sqrt{3}a$,则该双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{x}{lnx},g(x)=k({x-1})$.
(1)证明:?k∈R,直线y=g(x)都不是曲线y=f(x)的切线;
(2)若?x∈[e,e2],使得f(x)≤g(x)+$\frac{1}{2}$成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设Q表示要证明的结论,P表示一个明显成立的条件,那么下列流程图表示的证明方法是(  )
Q?P1→P1?P2→P2?P3→…→得到一个明显成立的条件.
A.综合法B.分析法C.反证法D.比较法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=sin(2x+\frac{π}{6})+sin(2x-\frac{π}{6})+cos2x+1$
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求AB.

查看答案和解析>>

同步练习册答案