精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=sin(2x+\frac{π}{6})+sin(2x-\frac{π}{6})+cos2x+1$
(1)求函数f(x)的最小正周期和函数的单调递增区间;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求AB.

分析 (1)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
(2)根据f(A)=3时,求解A,正弦定理求解b,再有余弦可得AB即c的值(或者求解sinC,正弦定理求解c)

解答 解:函数$f(x)=sin(2x+\frac{π}{6})+sin(2x-\frac{π}{6})+cos2x+1$,
化解可得:f(x)=2sin2xcos$\frac{π}{6}$+cos2x+1=$\sqrt{3}$sin2x+cos2x+1=2sin(2x+$\frac{π}{6}$)+1.
∴函数f(x)的最小正周期T=$\frac{2π}{2}=π$,
由$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}$得$kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6}(k∈Z)$,
故函数f(x)的单调递增区间$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$,
(2)∵$f(x)=2sin(2x+\frac{π}{6})+1\;,\;\;f(A)=3$,
∴$2sin(2A+\frac{π}{6})+1=3$$sin(2A+\frac{π}{6})=1$,
∵0<A<π,
∴$\frac{π}{6}<2A+\frac{π}{6}<\frac{13π}{6}$,
∴$2A+\frac{π}{6}=\frac{π}{2},\;∴A=\frac{π}{6}$,
$sinC=sin[{π-({A+B})}]=sin({A+B})=sin({\frac{π}{6}+\frac{π}{4}})=\frac{{\sqrt{6}+\sqrt{2}}}{4}$,
在△ABC中,由正弦定理得:$\frac{a}{sinA}=\frac{c}{sinC}$,
即$\frac{{\sqrt{3}}}{{\frac{1}{2}}}=\frac{c}{{\frac{{\sqrt{6}+\sqrt{2}}}{4}}}$.
$c=\frac{{3\sqrt{2}+\sqrt{6}}}{2}$,即$AB=c=\frac{{3\sqrt{2}+\sqrt{6}}}{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,正余弦定理的运用和计算能力,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知$tan({α+\frac{π}{4}})=\frac{3}{4}$,则${cos^2}({\frac{π}{4}-α})$=(  )
A.$\frac{7}{25}$B.$\frac{9}{25}$C.$\frac{16}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知边长为2的正方形ABCD中,E为AD中点,连BE,则$\overrightarrow{BE}$•$\overrightarrow{EA}$=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,3a5-a3a7=0,若数列{bn}为等差数列,且b5=a5,则{bn}的前9项的和S9为(  )
A.24B.25C.27D.28

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC内角A,B,C的对边分别是a,b,c,若$cosB=\frac{1}{4},b=3$,sinC=2sinA,则△ABC的面积为$\frac{9\sqrt{15}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在锐角△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A+$\sqrt{3}$sin(B+C)=1.
(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积S=10$\sqrt{3}$,c=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校设计了一个实验考察方案:考生从6道备选题中随机抽取3道题,按照题目要求独立完成全部实验操作,规定:至少正确完成其中的2道题便可通过.己知6道备选题中考生甲有4道能正确完成,2道题不能完成;考生乙每题正确完成的概率都是$\frac{2}{3}$,且每题正确完成与否互不影响.
(I) 求甲考生通过的概率;
(II) 求甲、乙两考生正确完成题数的概率分布列,和甲、乙两考生的数学期望;
(Ⅲ)请分析比较甲、乙两考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,直线y=$\frac{\sqrt{5}}{3}$b与椭圆C交于A、B两点.若四边形ABF2F1是矩形,则椭圆C的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)求Tn=a1b1+a2b2+…+anbn的值.

查看答案和解析>>

同步练习册答案