精英家教网 > 高中数学 > 题目详情
设f(x)=2x3+ax2+bx+c的导数为f′(x),若y=f′(x)的图象关于直线x=-
1
2
对称,且在x=1处取得极小值-6.
(Ⅰ)求实数a,b,c的值;
(Ⅱ)求函数f(x)在[-3,3]的最值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)由已知得f′(x)=6x2+2ax+b=6(x+
a
6
)2-
a2
6
+b
,由已知条件利用导数性质能求出实数a,b,c的值.
(Ⅱ)由(Ⅰ)知f'(x)=6x2+6x-12=6(x+2)(x-1),令f'(x)=0,得x=-2,x=1,列表讨论,能求出函数f(x)在[-3,3]的最值.
解答: 解:(Ⅰ)∵f(x)=2x3+ax2+bx+c,
f′(x)=6x2+2ax+b=6(x+
a
6
)2-
a2
6
+b

由题意知
-
a
6
=-
1
2
f′(1)=6+2a+b=0
f(1)=2+a+b+c=-6
,解得
a=3
b=-12
c=1

经检验,得a=3,b=-12,c=1.
(Ⅱ)由(Ⅰ)知f(x)=2x3+3x2-12x+1,
f'(x)=6x2+6x-12=6(x+2)(x-1)
令f'(x)=0,得x=-2,x=1
列表如下:
x-3(-3,-2)-2(-2,1)1(1,3)3
f'(x)+0-0+
f(x)10极大值21极小值-646
当x=1时,f(x)有最小值也是极小值-6,当x=3时,f(x)有最大值46.
点评:本题考查实数值的求法,考查函数在闭区间上最值的求法,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2e-2x,求函数在[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
ax2-2x+1+lnx(a>0)
(1)讨论函数f(x)的单调区间
(2)若a=
1
2
,f′(x)≥m,求m的最大值
(3)若a=
3
4
,证明f(x)只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an=2an-1+2n-1(n∈N+,n≥2),且a4=65.求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合B={-1,0,1},若A⊆B,试写出所有满足条件的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米).把这些高度列成了如下的频数分布表:
组别[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
频数231415124
(1)在这批树苗中任取一棵,其高度在85厘米以上的概率大约是多少?
(2)这批树苗的平均高度大约是多少?(计算时用组中值代替各组数据的平均值)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(|x+1|+|x-2|-a).
(1)当a=4时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≤1的解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+ax2+blnx,曲线y=f(x)过点P(1,0),且在点P处的切线的斜率为2.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)≤m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这种矩形中面积最大者的边长.

查看答案和解析>>

同步练习册答案