精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)的离心率e= ,右顶点、上顶点分别为A,B,直线AB被圆O:x2+y2=1截得的弦长为
(1)求椭圆C的方程;
(2)设过点B且斜率为k的动直线l与椭圆C的另一个交点为M, =λ( ),若点N在圆O上,求正实数λ的取值范围.

【答案】
(1)解:由 ,得 ,∴a=2b,

∴直线AB的方程为 ,即x+2y﹣2b=0,

圆心O(0,0)到直线AB的距离为d= ,∴ ,得b=1,

椭圆C的方程为


(2)解:设点M的坐标为(x0,y0)(y0≠0),则点N的坐标为(λx0,λ(y0+1)),

,得

,y0∈(﹣1,1),得

∴正实数λ的取值范围是[


【解析】(1)由题意离心率可得a=2b,设出AB所在直线方程,由圆心到直线的距离求得b,则椭圆方程可求;(2)设点M的坐标为(x0 , y0)(y0≠0),由已知向量等式得点N的坐标为(λx0 , λ(y0+1)),结合N在圆上,M在椭圆上,分离参数λ求解.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且(c﹣2a) =c
(1)求B的大小;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若对任意的x∈R,都有f(x)≤f(B),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列对几何体结构特征的描述,说出几何体的名称.

1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;

2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封闭曲面所围成的几何体;

3)由五个面围成,其中一个面是正方形,其他各面都是有一个公共顶点的全等三角形;

4)一个圆绕其一条直径所在的直线旋转180°形成的封闭曲面所围成的几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三边是连续的三个自然数.

(Ⅰ求最小边的取值范围

(Ⅱ是否存在这样的,使得其最大内角是最小内角的两倍若存在,试求出这个三角形的三边;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆

(Ⅰ)试判断圆与圆的位置关系;

(Ⅱ)在直线上是否存在不同于的一点,使得对于圆上任意一点都有为同一常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(1) 求出4个人中恰有2个人去 参加甲游戏的概率;

(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;

(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线上一动点,PA、PB是圆的两条切线,A、B为切点,若四边形PACB面积的最小值是2,则的值是

A. B. C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校从参加高一年级期中考试的学生中抽出名学生,并统计了她们的数学成绩(成绩均为整数且满分为分),数学成绩分组及各组频数如下:

样本频率分布表:

分组

频数

频率

合计

(1)在给出的样本频率分布表中,求的值;

(2)估计成绩在分以上(含分)学生的比例;

(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在的学生中选两位同学,共同帮助成绩在中的某一位同学.已知甲同学的成绩为分,乙同学的成绩为分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动点到两点的距离之和等于4,设点的轨迹为曲线,直线过点且与曲线交于两点.

求曲线的方程;

的面积是否存在最大值,若存在,求出的面积的最大值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案