【题目】已知圆,圆.
(Ⅰ)试判断圆与圆的位置关系;
(Ⅱ)在直线上是否存在不同于的一点,使得对于圆上任意一点都有为同一常数.
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.
(1)求这种“笼具”的体积;
(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以等腰直角三角形斜边上的高为折痕,把与折成互相垂直的两个平面后,有以下四个结论:
①;
②;
③三棱锥是正三棱锥;
④平面的法向量和平面的法向量互相垂直.
其中正确结论的序号是________________(请把正确结论的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率e= ,右顶点、上顶点分别为A,B,直线AB被圆O:x2+y2=1截得的弦长为
(1)求椭圆C的方程;
(2)设过点B且斜率为k的动直线l与椭圆C的另一个交点为M, =λ( ),若点N在圆O上,求正实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为双曲线: 的右焦点,过坐标原点的直线依次与双曲线的左、右支交于点,若, ,则该双曲线的离心率为( )
A. B. C. D.
【答案】B
【解析】,设双曲线的左焦点为,连接,由对称性可知, 为矩形,且,故,故选B.
【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.
【题型】单选题
【结束】
12
【题目】点到点, 及到直线的距离都相,如果这样的点恰好只有一个,那么实数的值是( )
A. B. C. 或 D. 或
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体是由以等边三角形ABC为底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,AF=2,BD=1,CE=3,O为BC的中点.
(1)求证:面EFD⊥面BCED;
(2)求平面DEF与平面ACEF所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com