函数y=f(x)(x∈R)有下列命题:
①在同一坐标系中,y=f(x+1)与y=f(-x+1)的图象关于直线x=1对称;
②若f(2-x)=f(x),则函数y=f(x)的图象关于直线x=1对称;
③若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期;
④若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称,其中正确命题的序号是 .
②③④
【解析】对于①,y=f(x+1)的图象由y=f(x)的图象向左平移1个单位得到,y=f(-x+1)的图象,由y=f(-x)的图象向右平移1个单位得到,而y=f(x)与y=f(-x)关于y轴对称,从而y=f(x+1)与y=f(-x+1)的图象关于直线x=0对称,故①错;
对于②,由f(2-x)=f(x)将x换为x+1可得f(1-x)=f(1+x),从而②正确;
对于③,由f(x-1)=f(x+1)将x换为x+1可得,f(x+2)=f(x),从而③正确.
对于④,由f(2-x)=-f(x)同上可得f(1-x)=-f(1+x),从而④正确.
【误区警示】解答本题时,易误以为①正确,出错的原因是混淆了两个函数y=f(x+1)与y=f(-x+1)的图象关系与一个函数y=f(x)满足f(x+1)=f(-x+1)时图象的对称关系.
科目:高中数学 来源:2014年高考数学文二轮专题复习与测试解答题保分训练练习卷(解析版) 题型:解答题
已知四棱锥P-ABCD的正视图是一个底边长为4,腰长为3的等腰三角形,如图分别是四棱锥P-ABCD的侧视图和俯视图.
(1)求证:AD⊥PC;
(2)求四棱锥P-ABCD的侧面PAB的面积.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(四)第二章第一节练习卷(解析版) 题型:选择题
已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为( )
(A)f(x)=- (B)f(x)=-
(C)f(x)= (D)f(x)=-
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(四)第二章第一节练习卷(解析版) 题型:选择题
若函数f(x)=,则函数f(x)的定义域是( )
(A)(1,+∞) (B)(0,1)∪(1,+∞)
(C)(-∞,-1)∪(-1,0) (D)(-∞,0)∪(0,1)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(六)第二章第三节练习卷(解析版) 题型:选择题
设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1)时,f(x)=lo(1-x),则函数f(x)在(1,2)上( )
(A)是增函数,且f(x)<0
(B)是增函数,且f(x)>0
(C)是减函数,且f(x)<0
(D)是减函数,且f(x)>0
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(六)第二章第三节练习卷(解析版) 题型:选择题
已知函数f(x)=lg|x|,x∈R且x≠0,则f(x)是( )
(A)奇函数且在(0,+∞)上单调递增
(B)偶函数且在(0,+∞)上单调递增
(C)奇函数且在(0,+∞)上单调递减
(D)偶函数且在(0,+∞)上单调递减
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(八)第二章第五节练习卷(解析版) 题型:选择题
函数f(x)=的定义域为( )
(A)(0,+∞) (B)(1,+∞)
(C)(0,1) (D)(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源:2014年高考数学全程总复习课时提升作业(九)第二章第六节练习卷(解析版) 题型:选择题
对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是( )
(A)(1,3) (B)(-∞,1)∪(3,+∞)
(C)(1,2) (D)(3,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com