精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|3<x<6},B={x|2<x<9},
(I)求A∩B,(∁RA)∪(∁RB)
(II)已知C={x|a<x<2a-1},若B∪C=B,求实数a的取值范围.

分析 (I)根据交集与并集、补集的定义,计算即可;
(II)由B∪C=B得C⊆B,讨论C=∅和C≠∅时,求出实数a的取值范围.

解答 解:(I)∵集合A={x|3<x<6},B={x|2<x<9},
∴A∩B={x|3<x<6},
∴(∁RA)∪(∁RB)=∁R(A∩B)={x|x≤3或x≥6};
(II)∵C={x|a<x<2a-1},
且B∪C=B,∴C⊆B,
当C=∅时,a≥2a-1,解得a≤1;
当C≠∅时,解得2≤a≤5;
综上,实数a的取值范围是a≤1或2≤a≤5.

点评 本题考查了集合的定义与基本运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},则A∩B=(  )
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数$f(x)=4sinx•{sin^2}({\frac{π}{4}+\frac{x}{2}})+cos2x$,若|f(x)-m|<2成立的充分条件是$\frac{π}{6}≤x≤\frac{2π}{3}$,则实数m的取值范围为(0,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设a为实数,函数f(x)=2x2+(x-a)•|x-a|.
(1)求f(x)的最小值;
(2)设h(x)=f(x)min,x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|1<x≤3},B={x|x<4,x∈Z},则A∩B=(  )
A.(2,3)B.[2,3]C.{2,3}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知e为自然对数的底数,若方程|xlnx-ex+e|=mx在区间[$\frac{1}{e}$,e2]上有三个不同实数根,则实数m的取值范围是[e-$\frac{1}{e}$-2,e-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)•f(x2);
③f($\frac{{x}_{1}{+x}_{2}}{2}$)>$\frac{f{(x}_{1})+f{(x}_{2})}{2}$;
④$\frac{f{(x}_{1})-f{(x}_{2})}{{x}_{1}{-x}_{2}}$>0;
⑤当1<x1<x2时$\frac{f{(x}_{1})}{{x}_{1}-1}>\frac{f{(x}_{2})}{{x}_{2}-1}$;
当f(x)=${(\frac{3}{2})}^{x}$时,上述结论中正确结论的序号是①④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=sin2x+$\sqrt{3}$cos2x图象上所有点向右平移$\frac{π}{6}$个单位长度,得到函数g (x)的图象,则g(x)图象的一个对称中心是(  )
A.($\frac{π}{3}$,0)B.( $\frac{π}{4}$,0)C.(-$\frac{π}{12}$,0)D.($\frac{π}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图1,ABCD是边长为2的正方形,点E,F分别为BC,CD的中点,将△ABE,△ECF,△FDA分别沿AE,EF,FA折起,使B,C,D三点重合于点P,若四面体PAEF的四个顶点在同一个球面上,则该球的表面积是(  )
A.$\sqrt{6}π$B.C.$4\sqrt{3}π$D.12π

查看答案和解析>>

同步练习册答案