精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<,x∈R)的图象的一部分如图所示.

(1)求函数f(x)的解析式.
(2)当x∈[-6,-]时,求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值.

(1) f(x)=2sin(x+)
(2) 当x=-,即x=-时,y=f(x)+f(x+2)取得最大值;
x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.
(1)求ω的最小正周期;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=2cos2x+2sinxcosx-1(x∈R).
(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期.
(2)若x∈[0,],求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调递增区间;
(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin xcos x+cos 2x(x∈R).
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若θ为锐角,且f,求tan θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(2cos2x-1)sin 2xcos 4x.
(1)求f(x)的最小正周期及最大值;
(2)若α,且f(α)=,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a=(Asin ωxAcos ωx),b=(cos θ,sin θ),f(x)=a·b+1,其中A>0,ω>0,θ为锐角.f(x)的图象的两个相邻对称中心的距离为,且当x时,f(x)取得最大值3.
(1)求f(x)的解析式;
(2)将f(x)的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g(x)的图象,若g(x)为奇函数,求φ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数)一段图像如图所示.

(1)求函数的解析式;
(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的4倍,得到函数的图像,求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x0x0是函数f(x)=cos2-sin2ωx(ω>0)的两个相邻的零点.
(1)求f的值;
(2)若对?x,都有|f(x)-m|≤1,求实数m的取值范围.

查看答案和解析>>

同步练习册答案