精英家教网 > 高中数学 > 题目详情
12.已知A、B、C是圆O上的三个点,CO的延长线与线段BA的延长线交于圆外一点.若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,其中m,n∈R.则m+n的取值范围是(  )
A.(0,1)B.(-1,0)C.(1,+∞)D.(-∞,-1)

分析 先利用向量数量积运算性质,将$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,两边平方,消去半径得m、n的数量关系,利用向量加法的平行四边形法则,可判断m+n一定为负值,从而可得正确结果.

解答 解:∵|OC|=|OB|=|OA|,$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,
∴1=m2+n2+2mncos∠AOB
当∠AOB=60°时,m2+n2+mn=1,m<0,n>0,即(m+n)2-mn=1,即(m+n)2=1+mn<1,
所以(m+n)2<1,
∴-1<m+n<1,当$\overrightarrow{OA}$,$\overrightarrow{OB}$趋近射线OD,
由平行四边形法则$\overrightarrow{OC}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,此时显然m<0,n>0,且|m|>|n|,
∴m+n<0,所以m+n的取值范围(-1,0).
故选B.

点评 本题主要考查了平面向量的几何意义,平面向量加法的平行四边形法则,平面向量基本定理,平面向量数量积运算的综合运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知正四棱柱(底面是正方形,侧棱垂直于底面)的高为4,体积为16,八个顶点都在一个球面上,则这个球的表面积是24π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,圆C内切于扇形AOB,$∠AOB=\frac{π}{3}$,若在扇形AOB内任取一点,则该点在圆C内的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且满足an+Sn=1.
(1)求数列{an}的通项公式;
(2)令bn=n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知${a^{\frac{2}{3}}}=\frac{4}{9}(a>0)$,则${log_a}\frac{3}{2}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}中,a5=9,且2a3-a2=6,则a1等于(  )
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图动直线l:y=b与抛物线y2=4x交于点A,与椭圆$\frac{x^2}{2}+{y^2}=1$交于抛物线右侧的点B,F为抛物线的焦点,则AF+BF+AB的最大值为(  )
A.3B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点为E,过双曲线的左焦点且垂直于x轴的直线与该双曲线相交于A、B两点,若∠AEB=90°,则该双曲线的离心率e是(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.2C.$\frac{{\sqrt{5}+1}}{2}$或2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,设向量$\overrightarrow a=(sinθ,-\frac{1}{2}),\overrightarrow b=(cosθ,\frac{1}{4})$,其中θ∈(0,π).
(1)若$\overrightarrow a∥\overrightarrow b$,求sinθ和cosθ的值;
(2)设$ϕ∈(0,\frac{π}{2})$,且$sin(ϕ+\frac{π}{2})+cos(ϕ-\frac{3π}{2})=0$,若$sinθcosϕ+cosθsinϕ=\frac{{\sqrt{10}}}{4}$,求证:$\overrightarrow a⊥\overrightarrow b$.

查看答案和解析>>

同步练习册答案