精英家教网 > 高中数学 > 题目详情
2.已知正四棱柱(底面是正方形,侧棱垂直于底面)的高为4,体积为16,八个顶点都在一个球面上,则这个球的表面积是24π.

分析 先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.

解答 解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,
正四棱柱的对角线长即球的直径为2$\sqrt{6}$,
∴球的半径为$\sqrt{6}$,球的表面积是24π,
故答案为.

点评 本题考查学生空间想象能力,四棱柱的体积,球的表面积,容易疏忽的地方是几何体的体对角线是外接球的直径,导致出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知实数x,y满足$\left\{\begin{array}{l}2x-y+4≥0\\ x-2y-5≤0\\ x+2y-4≤0\end{array}\right.$,则z=2x+3y的最大值与最小值之差为(  )
A.-$\frac{68}{3}$B.$\frac{371}{12}$C.$\frac{33}{4}$D.$\frac{28}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数fk(x)=ax+ka-x,(k∈Z,a>0且a≠1).
(Ⅰ)若f1(1)=3,求f1($\frac{1}{2}$)的值;
(Ⅱ)若fk(x)为定义在R上的奇函数,且a>1,是否存在实数λ,使得fk(cos2x)+fk(2λsinx-5)<0对任意x∈[0,$\frac{2π}{3}$]恒成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若${({1-2x})^{2013}}={a_0}+{a_1}x+…+{a_{2013}}{x^{2013}}({x∈R})$,则$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2013}}}}{{{2^{2014}}}}$值为(  )
A.1B.0C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的部分图象如图所示,则下列结论错误的是(  )
A.$φ=-\frac{π}{4}$
B.函数f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上单调递增
C.函数f(x)的一条对称轴是$x=\frac{3π}{4}$
D.为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)利用“五点法”画出函数$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$在$[{-\frac{π}{3},\frac{11π}{3}}]$内的简图
 x     
 $\frac{1}{2}$x+$\frac{π}{6}$     
 y     

(2)若对任意x∈[0,2π],都有f(x)-3<m<f(x)+3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系中,点A(1,-2,3)与点B(-1,-2,-3)关于(  )对称.
A.x轴B.y轴C.z轴D.原点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}的前n项和为Sn,且${a_1}=1,{S_n}=\frac{{({n+1}){a_n}}}{2}$,则a2017=(  )
A.2016B.2017C.4032D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A、B、C是圆O上的三个点,CO的延长线与线段BA的延长线交于圆外一点.若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,其中m,n∈R.则m+n的取值范围是(  )
A.(0,1)B.(-1,0)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

同步练习册答案