精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的部分图象如图所示,则下列结论错误的是(  )
A.$φ=-\frac{π}{4}$
B.函数f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上单调递增
C.函数f(x)的一条对称轴是$x=\frac{3π}{4}$
D.为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移$\frac{π}{4}$个单位

分析 求出函数的解析式,利用三角函数图象性质、图象变换,即可得出结论.

解答 解:由题意,$\frac{T}{4}$=$\frac{2π}{4}$,∴ω=1,
($\frac{3π}{4}$,2)代入f(x)=2sin(x+φ),可得φ=-$\frac{π}{4}$,
∴f(x)=2sin(x-$\frac{π}{4}$),
∴A正确,
由于函数单调递增,2kπ-$\frac{π}{2}$≤x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,可得函数f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上单调递增,B正确;
x=$\frac{3π}{4}$时,f(x)=2,即函数f(x)的一条对称轴是$x=\frac{3π}{4}$,C正确;
f(x)=2cos(x-$\frac{3π}{4}$),为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移$\frac{3π}{4}$个单位,D不正确.
故选D.

点评 本题考查三角函数的图象与性质,考查图象变换,正确求出函数的解析式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知圆C的方程为(x-3)2+(y-4)2=22,平面上有A(1,0),B(-1,0)两点,点Q在圆C上,则△ABQ的面积的最大值是(  )
A.6B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,首项为a1且1,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求数列$\left\{{\frac{1}{b_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线3x+4y+a=0上存在点M满足过点M作圆(x-2)2+(y-1)2=2的两条切线互相垂直,则a的取值范围是(  )
A.(-20,0]B.[-20,0]C.[-20,0)D.(-20,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数y=f(x)(x∈I),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x),x∈I.即y=h(x),x∈I满足对任意x∈I,两点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是$g(x)=\sqrt{4-{x^2}}$关于f(x)=3x+m的对称函数,且h(x)>g(x)恒成立,则实数m的取值范围是(2$\sqrt{10}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正四棱柱(底面是正方形,侧棱垂直于底面)的高为4,体积为16,八个顶点都在一个球面上,则这个球的表面积是24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分图象如图所示,则f(x)的解析式是(  )
A.$f(x)=sin(x+\frac{π}{6})$B.$f(x)=sin(x+\frac{π}{3})$C.$f(x)=sin(2x+\frac{π}{6})$D.$f(x)=sin(2x+\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\vec a=(2cosx,\sqrt{3}cosx)$,$\vec b=(cosx,2sinx)$,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R)
(1)求函数f(x)的周期;
(2)若方程f(x)-t=1在$x∈[0,\frac{π}{2}]$内恒有两个不相等的实数解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知${a^{\frac{2}{3}}}=\frac{4}{9}(a>0)$,则${log_a}\frac{3}{2}$=(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.-3D.3

查看答案和解析>>

同步练习册答案