精英家教网 > 高中数学 > 题目详情
12.已知函数y=f(x)(x∈I),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x),x∈I.即y=h(x),x∈I满足对任意x∈I,两点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是$g(x)=\sqrt{4-{x^2}}$关于f(x)=3x+m的对称函数,且h(x)>g(x)恒成立,则实数m的取值范围是(2$\sqrt{10}$,+∞).

分析 根据对称函数的定义,将不等式恒成立转化为直线和圆的位置关系,数形结合得结论.

解答 解:根据“对称函数”的定义可知,$\frac{h(x)+\sqrt{4-{x}^{2}}}{2}$=3x+m,
即h(x)=6x+2m-$\sqrt{4-{x}^{2}}$,
若h(x)>g(x)恒成立,
则等价为6x+2m-$\sqrt{4-{x}^{2}}$>$\sqrt{4-{x}^{2}}$,
即3x+m>$\sqrt{4-{x}^{2}}$恒成立,
设y1=3x+m,y2=$\sqrt{4-{x}^{2}}$,
作出两个函数对应的图象如图,
当直线和上半圆相切时,圆心到直线的距离d=$\frac{|m|}{\sqrt{10}}$=2,
即|m|=2$\sqrt{10}$,
∴m=2$\sqrt{10}$或-2$\sqrt{10}$,(舍去),
即要使h(x)>g(x)恒成立,
则m>2$\sqrt{10}$,
即实数m的取值范围是(2$\sqrt{10}$,+∞),
故答案为:(2$\sqrt{10}$,+∞).

点评 本题主要考查对称函数的定义的理解,以及不等式恒成立的证明,利用直线和圆的位置关系是解决本题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\frac{x}{{e}^{x}}$(e是对自然对数的底数),则其导函数f'(x)=(  )
A.$\frac{1+x}{{e}^{x}}$B.$\frac{1-x}{{e}^{x}}$C.1+xD.1-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有$f[{f(x)+{{log}_{\frac{1}{3}}}x}]=4$,且方程|f(x)-3|=x3-6x2+9x-4+a在区间(0,3]上有两解,则实数a的取值范围是(  )
A.0<a≤5B.a<5C.0<a<5D.a≥5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$f(x)=\left\{\begin{array}{l}x+1,({0≤x<1})\\{2^x}-\frac{1}{2},({x≥1})\end{array}\right.$,设a>b≥0,若f(a)=f(b),则b•f(a)的取值范围是(  )
A.(1,2]B.$({\frac{3}{4},2}]$C.$[{\frac{3}{4},2})$D.$({\frac{1}{2},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的圆心C在x轴上,且圆C与直线$x+\sqrt{3}y+n=0$相切于点$({\frac{3}{2},\frac{{\sqrt{3}}}{2}})$.
(1)求n的值及圆C的方程;
(2)若圆M:${x^2}+{({y-\sqrt{15}})^2}={r^2}({r>0})$与圆C相切,求直线$\sqrt{3}x-\sqrt{2}y=0$截圆M所得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=2sin({ωx+φ})({ω>0,-\frac{π}{2}<φ<\frac{π}{2}})$的部分图象如图所示,则下列结论错误的是(  )
A.$φ=-\frac{π}{4}$
B.函数f(x)在$[{-\frac{π}{4},\frac{3π}{4}}]$上单调递增
C.函数f(x)的一条对称轴是$x=\frac{3π}{4}$
D.为了得到函数f(x)的图象,只需将函数y=2cosx的图象向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程为(  )
A.y=2x或x-y+1=0B.y=2x,x+y-3=0
C.x+y-3=0,或x-y+1=0D.y=2x,或x+y-3=0,或x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\frac{lnx}{x}$,若f′(x0)=0,则x0=(  )
A.e2B.eC.1D.ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=a(x-1)-lnx(a∈R),g(x)=ex-x-1.
(1)求函数g(x)的单调区间;
(2)若对任意x0∈(0,1],总存在两个不同的xi∈(0,e](i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案