精英家教网 > 高中数学 > 题目详情
4.如图动直线l:y=b与抛物线y2=4x交于点A,与椭圆$\frac{x^2}{2}+{y^2}=1$交于抛物线右侧的点B,F为抛物线的焦点,则AF+BF+AB的最大值为(  )
A.3B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

分析 由题意画出图形,结合抛物线的定义及椭圆定义把AF+BF+AB转化求得最大值.

解答 解:如图,

延长BA交抛物线的准线于C,设椭圆的左焦点为F′,连接BF′,
则由题意可得:AC=AF,BF=2a-BF′,
∴AF+BF+AB=AC+2a-BF′+AB=AC+AB+2a-BF′
=BC+2a-BF′=2a-(BF′-BC).
≤2a=$2\sqrt{2}$.
∴AF+BF+AB的最大值为$2\sqrt{2}$.
故选:D.

点评 本题考查椭圆的简单性质,考查了数形结合的解题思想方法和数学转化思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在空间直角坐标系中,点A(1,-2,3)与点B(-1,-2,-3)关于(  )对称.
A.x轴B.y轴C.z轴D.原点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a,b是两个正数,且a,b,-4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则a+b的值等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A、B、C是圆O上的三个点,CO的延长线与线段BA的延长线交于圆外一点.若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,其中m,n∈R.则m+n的取值范围是(  )
A.(0,1)B.(-1,0)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为$S=\sqrt{\frac{1}{4}[{{a^2}{c^2}-{{({\frac{{{a^2}+{c^2}-{b^2}}}{2}})}^2}}]}$.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=({1,0,2})$,$\overrightarrow b=({-1,1,0})$,$\overrightarrow c=({-1,y,2})$,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$三向量共面,则实数y的值为(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某班级将从甲、乙两位同学中选派一人参加数学竞赛,老师对他们平时的5次模拟测试成绩(满分:100分)进行了记录,其统计数据的茎叶图如图所示,已知甲、乙两位同学的平均成绩都为90分.
(Ⅰ)求出a,b的值;
(Ⅱ)分别计算这两组数据的方差,并根据统计学知识,请你判断选派哪位学生参加合适?
(Ⅲ)从甲同学的5次成绩中任取两次,若两次成绩的平均分大于90,则称这两次成绩为“优秀组合”,求甲同学的两次成绩为“优秀组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=1+lgx+$\frac{9}{lgx}$(0<x<1)的最大值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.平面截球得到的半径是3的圆面,球心到这个平面的距离是4,则该球的表面积是(  )
A.20πB.$\frac{416\sqrt{3}π}{3}$C.$\frac{500π}{3}$D.100π

查看答案和解析>>

同步练习册答案