精英家教网 > 高中数学 > 题目详情
13.函数f(x)=1+lgx+$\frac{9}{lgx}$(0<x<1)的最大值是-5.

分析 由0<x<1,可得lgx<0,即-lgx>0,则f(x)=1+lgx+$\frac{9}{lgx}$=1-[(-lgx)+$\frac{9}{-lgx}$],由基本不等式即可得到所求最大值.

解答 解:由0<x<1,可得lgx<0,即-lgx>0,
则f(x)=1+lgx+$\frac{9}{lgx}$=1-[(-lgx)+$\frac{9}{-lgx}$]≤1-2$\sqrt{(-lgx)•\frac{9}{-lgx}}$=1-6=-5,
当且仅当lgx=-3即x=10-3,取得等号,
即有f(x)的最大值为-5.
故答案为:-5.

点评 本题考查函数的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,圆C内切于扇形AOB,$∠AOB=\frac{π}{3}$,若在扇形AOB内任取一点,则该点在圆C内的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图动直线l:y=b与抛物线y2=4x交于点A,与椭圆$\frac{x^2}{2}+{y^2}=1$交于抛物线右侧的点B,F为抛物线的焦点,则AF+BF+AB的最大值为(  )
A.3B.$3\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右顶点为E,过双曲线的左焦点且垂直于x轴的直线与该双曲线相交于A、B两点,若∠AEB=90°,则该双曲线的离心率e是(  )
A.$\frac{{\sqrt{5}+1}}{2}$B.2C.$\frac{{\sqrt{5}+1}}{2}$或2D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是$\frac{π}{3}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,若(2$\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则实数λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,且PA=AD=3,$CD=\sqrt{6}$,E、F分别是AB、PD的中点,则点F到平面PCE的距离为(  )
A.$\frac{{3\sqrt{2}}}{4}$B.$\sqrt{2}$C.$\frac{{3\sqrt{3}}}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=sin2x的单调减区间是(  )
A.$[\frac{π}{2}+2kπ,\frac{3}{2}π+2kπ](k∈Z)$B.$[kπ+\frac{π}{4},kπ+\frac{3}{4}π](k∈Z)$
C.[π+2kπ,3π+2kπ](k∈Z)D.$[kπ-\frac{π}{4},kπ+\frac{π}{4}](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,设向量$\overrightarrow a=(sinθ,-\frac{1}{2}),\overrightarrow b=(cosθ,\frac{1}{4})$,其中θ∈(0,π).
(1)若$\overrightarrow a∥\overrightarrow b$,求sinθ和cosθ的值;
(2)设$ϕ∈(0,\frac{π}{2})$,且$sin(ϕ+\frac{π}{2})+cos(ϕ-\frac{3π}{2})=0$,若$sinθcosϕ+cosθsinϕ=\frac{{\sqrt{10}}}{4}$,求证:$\overrightarrow a⊥\overrightarrow b$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,不是公理的是(  )
A.平行于同一条直线的两条直线平行
B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内
C.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
D.如果两个角的两边分别平行,则这两个角相等或互补

查看答案和解析>>

同步练习册答案