分析 由0<x<1,可得lgx<0,即-lgx>0,则f(x)=1+lgx+$\frac{9}{lgx}$=1-[(-lgx)+$\frac{9}{-lgx}$],由基本不等式即可得到所求最大值.
解答 解:由0<x<1,可得lgx<0,即-lgx>0,
则f(x)=1+lgx+$\frac{9}{lgx}$=1-[(-lgx)+$\frac{9}{-lgx}$]≤1-2$\sqrt{(-lgx)•\frac{9}{-lgx}}$=1-6=-5,
当且仅当lgx=-3即x=10-3,取得等号,
即有f(x)的最大值为-5.
故答案为:-5.
点评 本题考查函数的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $3\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | 2 | C. | $\frac{{\sqrt{5}+1}}{2}$或2 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{2}}}{4}$ | B. | $\sqrt{2}$ | C. | $\frac{{3\sqrt{3}}}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{π}{2}+2kπ,\frac{3}{2}π+2kπ](k∈Z)$ | B. | $[kπ+\frac{π}{4},kπ+\frac{3}{4}π](k∈Z)$ | ||
| C. | [π+2kπ,3π+2kπ](k∈Z) | D. | $[kπ-\frac{π}{4},kπ+\frac{π}{4}](k∈Z)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 平行于同一条直线的两条直线平行 | |
| B. | 如果一条直线上的两点在一个平面内,那么这条直线在此平面内 | |
| C. | 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 | |
| D. | 如果两个角的两边分别平行,则这两个角相等或互补 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com