精英家教网 > 高中数学 > 题目详情
A={x|2≤x≤6},B={x|3x-7≥8-2x},
(1)A∪B,∁R(A∩B)
(2)若C={x|a-4<x≤a+4},且A⊆C,求a.
考点:子集与交集、并集运算的转换
专题:集合
分析:(1)由A与B,即可求出两集合的并集和交集;再由全集R及集合A与B的交集,求出A∩B的补集即可;
(2)根据A⊆C,由A与C求出a的范围即可.
解答: 解:(1)A={x|2≤x≤6},B={x|x≥3},
∴A∩B={x|3≤x≤6},
∴CR(A∪B)={x|x<3或x>6};
(2)∵C={x|a-4<x≤a+4},且A⊆C,
a-4<2
a+4≥6

∴2≤a<6
点评:此题考查了并集、交集及其运算,熟练掌握并集、交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元.
(Ⅰ)把全程运输成本y(元)表示为速度x(海里/小时)的函数;
(Ⅱ)为使全程运输成本最小,轮船应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数h(x)=
1
x
-x
,若不等式h(x)•h(2k-x)≥(
1
k
-k
2在(0,2k)上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
3
2
,α∈(
π
2
,π)
(Ⅰ)求tanα的值;
(Ⅱ)求cos(α+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+3-2m,若函数f(x)在区间[-1,1]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD的底面是一等腰梯形,其中AD∥BC,其中AD=3BC=6,AB=DC=2
2
,又平面PAD⊥平面ABCD,PA=PD=5,点O是线段AD的中点,经过直线OB且与直线PA平行的平面OBM与直线PC相交于点M.
(1)确定实数t,使得
PM
=t
MC

(2)求平面PAD与平面OBM夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,且满足2B=A+C,若b=4,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x,x>0
log2x,x<0
,则f(f(
1
4
))+f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+y2=4,在圆M上随机取两点A、B,使|AB|≤2
3
的概率为
 

查看答案和解析>>

同步练习册答案